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Abstract of “Steady Waves in a Nonlinear Theory of Viscoelasticity”

by Gregory Thomas Warhola, Ph.D., Brown University, May 1988.

This work considers the propagation of steady waves in viscoelastic materials
for which the nounlinear strain measure is not necessarily convex. The shape of such
a wave is governed by an ordinary nonlinear integro-differential equation having
a possibly singular difference kernel. The existence and structure of a solution
depends upon the relation of the wavespeed, a parameter in the problem, to two
speeds based upon the state of the material ahead of the wave. Solutions are
constructed by a monotone iterative scheme which is proven to converge to a unique
solution within restricted classes of functions depending upon the wavespeed. A
simple numerical approximation to the iterative scheme is used to produce graphs
of solutions. An algebraic “quasielastic” approximation produces upper bounds
on discontinuous (shock and acceleration wave) solutions. For a material such as
polymethyl methacrylate (PMMA) having a small power in a power-law model of
its compliance, this approximation is found to be useful for accurately predicting

the structure of shock solutions.
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CHAPTER 1: INTRODUCTION

We are concerned with the propagation of mechanical disturbances in visco-
elastic materials. Any such a disturbance in a material is called a wave if it has
features which are clearly recognizable as it progresses through the material. In a
one-dimensional theory where r and ¢ represent place and time, respectively, a wave
is steady if its features are described by a single shape function, say w(6), where
§=1t-z/V. The constant V is the wavespeed, the velocity of propagation of the

disturbance w.

Transient loading experiments conducted by Schuler [1.1] on the viscoelastic

- 3

s

=W W

s

material polymethyl methacrylate (PMMA) have produced waves which appear ;:'_
"
steady over intervals of observation. In this and other viscoelastic materials having )
a nonlinear dependence of the stress upon the strain, the tendency for disturbances :E
to dissipate due to time-dependent viscoelastic effects is opposed by the nonlin- :\:
'
4
earity. Shock waves are produced if the loading is sufficiently high. Such waves h
are mathematically characterized by a discontinuity in the material particle veloc- .'
~
ity. Kolsky has produced travelling waves in stretched natural rubber [1.2], which g
)
waves exhibit a rapid variation in the particle velocity at the wave front. 2
)
Early mathematical investigations into the propagation of steady acceleration g
and shock waves were conducted by Coleman, Gurtin, and Herrera [1.3), in which ,:.
Y
they assumed ecistence of such solutions. Acceleration waves are characterized by .
a discontinuity in some derivative of the particle velocity. Such waves travel at a
]
critical value of wavespeed, with respect to the state of the material ahead of the ':
%
wave; shocks travel at supercritical speeds. Pipkin [1.4] demonstrated the existence -
)
(3
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of steady shock and acceleration wave solutions for a specific model of a nonlinear
viscoelastic fluid. Furthermore, his treatment includes smooth solutions at sub-
critical wavespeeds. In an abstract mathematical setting, Greenberg proved the
existence of steady shock waves for a broad class of nonlinear viscoelastic materi-
als [1.5]. Greenberg and Hastings [1.6] later studied steady waves in viscoelastic
materials in a somewhat less abstract setting. A lengthy description of experimen-
tal and mathematical investigations into this subject until 1974 is contained in the

work by Nunziato et al [1.7].

Our goal is to study the propagation of steady waves in nonlinear viscoelastic
materials with yet l.ess abstraction while providing a treatment which is suficiently
general to include useful current models of such materials. This is a purely me-
chanical treatment; no thermodynamic quantities are considered. In Chapter 2, we
provide foundation material for the rest of this work. The equations governing
material deformation are presented along with the constitutive equation describing
the viscoelastic materials considered. We describe at some length the general non-
linearity we consider, since it includes a departure from the convexity requirement
imposed in the earlier treatments [1.5] and [1.6]. We also introduce the quasi-elastic
approximation to the constitutive equation. We later find this approximation to be

accurate enough for description of shock waves in materials like PMMA.

We derive a nonlinear integro-differential equation governing steady waves in
Chapter 3. This equation contains the wavespeed as a parameter. After a brief
look at steady waves in a linear viscoelastic theory, we prove some general results
concerning steady waves in a nonlinear viscoelastic material. From these results, we
propose candidate solutions to the problem, which solutions depend upon the rela-
tion of the wavespeed to a critical value. In Chapter 4, we prove the existence and
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uniqueness of these steady wave solutions. We use an iteration scheme to produce
monotone sequences of successive approximations to the solution. Our approach is

in the spirit of the work of Greenberg and Hastings [1.5]; however, we have relaxed

R S S

some of their hypotheses on the materials considered. Additionally, we use a dif-
ferent iteration scheme which is amenable to a simple numerical approximation for

the construction of graphs of approximate solutions.

3 In Chapter 5, we consider the detailed structure of steady shock and acceler-
ation waves near the discontinuity. We also discuss the continuity of such solutions
as a function of the wavespeed. We show how the information in a known solution
at a given wavespeed can be used to obtain the solution for another wavespeed. }
The numerical approximation to the iteration scheme is introduced. We use it to

construct approximate solutions for shock and acceleration waves in materials char- A

Lan gl 2R A L M o o o g o o
=

acterized by exponential and power-law moduli. It is here where we see that the
quasi-elastic approximation is close to the exact solution for power-law materials

having a small power. The graphs of shocks we produce are in good agreement with !

L an an o

the experimental results for PMMA obtained by Schuler [1.1]. ‘

The final chapter, 6, is devoted to smooth solutions below the critical (accel-

eration wave) wavespeed. We use a perturbation technique to obtain solutions for

wvwewv

waves of infinitesimal amplitude in a viscoelastic solid. We construct solutions via

iteration for specific examples involving power-law materials.
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CHAPTER 2: NONLINEAR VISCOELASTIC DEFORMATIONS

2.1 Governing Equations.

We consider one-dimensional deformations of an infinite homogeneous nonlin-
early viscoelastic body from a (possibly strained) reference configuration in which
the body is at rest and its material points {or particles) are identified with their
position z on the real line. Let u(z,¢) be the displacement at ¢ at the time ¢ of
a particle from its reference position. We consider functions v which are continu-
ous and piecewise differentiable in each of their arguments. We write the partial
derivatives du(z, )/8z = uz(z,-) and du(-,t)/dt = u¢(-,t). The perturbed particle
velocity is

v(z, t) = u,{z,t). {2.1.1)

The perturbed strain is given by
e(z,t) = uz(z,t). (2.1.2)

We normalize the extra stress o(z,f) by the mass density and write the balance of
linear momentum as

vi(z,t) = o-(z,1), (2.1.3)

where these derivatives exist. From equations (2.1.1) and (2.1.2), the compatibility
condition is

gz, t) = vg(z,t). (2.1.4)

The following constitutive relation defines the nonlinear viscoelastic materials con-
sidered in this work; it is a viscoelastic extension of the relation ¢ = f(e) used in

4
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nonlinear elasticity. We consider materials for which the stress at the current time ¢
depends on the current strain and the entire previous strain history through the
convolution relation
+ o0
o(z,t) = / G(t - 7)df(e(z,7)). (2.1.5)
-0
The integral in equation (2.1.5) is a Stieltjes integral. We describe its properties
which are essential for this work in the following section. All of the nonlinearity
in the problem is embodied in the strain curve f(¢), whose graph is local to the
reference state such that f{(0) = 0. Further properties of the curves f that we
consider are contained in section 2.3. The function G(t) is the stress relaxation
function with units of modulus divided by mass density. Its properties are contained
in section 2.5, after a section on regularly-varying functions. We discuss some

properties of the constitutive law in section 2.6.

We note that in a more general treatment one could consider the constitutive
model
+00
o(z,t) = Geg(e(z,t)) + / [((G(t - 1) - Ge)ldf(e(z, 1)), (2.1.6)
- 00
where G, is a positive constant. In this model the equilibrium elastic stress G.g(¢)
has a different nonlinear dependence on the strain than does the transient integral
term. In cases where the curves f and g are determined experimentally, this ap-
proach doubles the data required to model the nonlinearity in the problem. For
this work, we assume that the nonlinearity is characterized by a single set of these

measurements, such that f = ¢, in which case equation (2.1.6) reduces to (2.1.5).
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2.2 Properties of the Stieltjes Integral.

Throughout this work we will be concerned only with functions which may
be written as the indefinite integral of their derivative, in the generalized sense
described below. Such functions have bounded variation on any finite interval. These
properties are enough to ensure the existence of the Stieltjes integral. A proof of
its existence and a collection of its properties is contained in the monograph by
Widder [2.1]. We illustrate only what is needed herein. Consider, for example, the
improper integral:

+ oo ,
()= / K (7, )du(r), (2.2.1) p

— 00

where py is monotone. (If 4 is not monotone, it can always be decomposed as

#=py —p—,where py and g_ are monotone.) If u(t) has a piecewise continuous

derivative u/(t), then du(t) = u'(t)dt in equation (2.2.1), which is then evaluated

as an ordinary Riemann integral. Thus, if #(¢) = ¢, then I reduces to the Riemann

"integral of K. If, however, u has a jump at ¢, given by h
[}
Ap(ty) = lim p(t) — lim p(t), (2.2.2)
tte t1t, J
then b
+ o0 .
I(-) = K(t,,-)An(t,) + / K (r,)n'(r)dr. (2.2.4)
-~ 00

In particular, for a function J (¢} which vanishes for ¢t < 0, has a finite value J,

at t = 0, and whose derivative is given for ¢t > 0 by J '+(t), we have

t t
/ dJ(r) dJ (1)

- 00 0

It

il
~
[~]
+
~
+ -
Y
Y
)

Jo+ J(t) - J,

e T

J(t). (2.2.5)

6

AT

Y ‘1*" » V"f‘ 3 » ” . -ru . -J‘p PR B A - Y )
-?',n\l SN G A N SR e T~ Y i) < p o l!"o.‘.u‘ 2 l;“l."l,’l.“l"l.‘.l. A O ) ‘n.l'nf"n."_t. '\:' ‘ u‘,l .‘;'.O‘s



o

DhCPR S e 2o )

Ly

TV L

[ 3 s )

WP XA -
l?. " I.\.'.A ‘..

T
M LAY, N

. ¢ . .
Integrals like f() dJ(r) are understood to include integration of the jump in J at an
endpoint of the integration interval, if such a jump exists We use the notation f, (¢}

to denote the restriction of f to positive values cf (.

2.3 The Strain Curve f(¢).

The strain curve f(e) is assumed to be a single-valued continuovus function of ¢
with a piecewise continnous derivative f'(¢). When the deformations are small w.
expect that the hinear theory of viscoelasticity would apply: this leads us to consider

curves f which have the property
fle) ~ ¢, € =0 (231)

We limit discussion to functions f which are strictly greater than ¢, over the range

of ¢ considered, when the strain is non-zero:

f(e) > ¢, E#£0

f(e) =0, e =0. (2.3.2)

We do not require f to be globally convex. Instead, we consider the possibly non-
convex functions whose graphs have a unique intersection with any ray from the
origin, over the range of ¢ considered. For the cases in which we are most inter-

ested, ¢ is positive. We require that the equation
fle) = me =0, m > 1, (23 3)

have a unique positive solution €, for each value of m We now show that these

properties are sufficient for us to write any f we consider, for positive strain. as

v
=)

fle) = m(e)e, € (23 4)
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where m(e) 15 a continuous function, increasing mouotontcally from m{o) = 1
with a precewise vontinuous derivative m'(e) We already bhave as an assump-
tien (23 34} that - s uniquely determined by m Now S}/ uniquely
determines m oas a function of € for ¢ > 0 Furthermore, m (0} 1 follows directly

from (23 1) Thus. there 1s a one-to-one relationship between m and ¢ m(¢) 1s
monotone Property (23 2) imphes that m s increasing (strictly since m s one-to-
one) The continuity of f requires that m(e) be continuous Since we require f "(e)

to b prevewise contindous. and sipce

e} = m(e) + m'(e)e (235)

!
m (+) must. too, he precewise continuous

Conversely, any function f of the form (2.3.4) necessarily has the properties
we desire The continuity of f aud the piecewise continuity of its derivative follow
from the hke properties of m and m’ when used in equations (2.3 4) and (2.3.5}
Properties (23 1) and (2.3.2) are satisfied since m(0) = 1 and m s increasing

Finally. (23 3) has a unique solution ¢ since f/e = m(¢c) 1s monotone.

A representative curve f(e) is shown in Figure 2.1 From (2.3.4), we have that
the slope of the secant from the origin to the point (e, f{e€)) 1s m(c} Since m(e) s

increasing. we see from (2.3.5) that

J'(e) > mie). €>0, (2.3.6)

with equality if and only if m'(€) = 0. the points having this property cannot be a
i

dense set. since m s strictly increasiug

Equation (2 3 6) implies that f increases monotonically when ¢ > 0 Addi-

tionally f increases fast enough so that the slope of the secant {rom the origin to
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Figure 2.1. A representative straimn rurve f(e) (top) and the monotone function 3

m(r) which generates it (hottom) f 15 asymptotically linear for small ¢ At A
J
the slope of f is infinite At B, [ 15 tangent to the secant to B from the origin .
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! -
‘ any given point on the curve f{e), 18 less than the slope of the secant to the given y
L]
pomnt from any other point on the curve, when ¢ is positive for both points

flea)d  fle2) - [ley) _ N
misy) - - 0 Tt R Fp €0 > 0 (237) Y
‘1 0 €1 ¥
.
.v
We prove this first for 5 > e, a0 which case mes) > m{e ), and thus, f(ea) > :
mieyjes We subtract f(e)) = m(ey)ey from the latter anequality. divide by the K
positive quantity <. — ¢}, and obtain the desired result On the other hand. when X

s < s owe have mi(sa) < miley) Then fesh < mi{- )y ana - f(:a) > ~m(eg)e>
A
By adding f{+y) = m{e )e; to the latter inequahty, and dividing by €y ~ £5, the X
.
pl’lnlf 18 l'“l]l]lll'lt' k
In the proof of (2.3.7), there is the tacit statement that for all 0 < € < ¢,, the h,
»
graph of f(c) les below the secant from the origin to the point (e,, fle,)) We ¥
state this separately for future use as: '
J(£) < m(e,)e, 0 < ¢ < g, (2.3.8) h
‘l
]
'l
Similarly, we have: ¢
Sle) > m(e,)e, e > €, (2.3.9) i
2
3
1]
1
We will have occasion to consider ¢ as a function of f The above properties ‘
L]
of [ ensure that 1t has a strictly increasing inverse F . such that F(f) = ¢ Thas .
.\
inverse has properties similar to those of f .
4
FUy~f 1 -0 v

(23 10)
Fif) <y, [ >0 N
]
For each positive M < 1. there 1s a unique non-zero value of f which satisfies .
o
F(fi-M/f -0 (2311) 3
-
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So, we write
F(f)=M([)]. />, (23 12)

where M (f) s the slope of the secant from the origin to the pownt (£ F(f}), on the

curve F(f) Assuch. M (f) s the recaprocal of m(e),

M(f) = /> u. (2313)

m(Ff))
and s strictly decreasing from M (0) = 1 Its rate of decrease is limited by the
requirement that F be increasing From an equation analogous to (2.3 5), M must

~atisfy

A
IM '(f)] € 7”—)~, (2.3.14)

with equality only at poinis not belonging to a dense set. Analogous to equa-

tions (2.3.6) through (2.3.9), we have for F:

F'(H <My,  f2o0, (2.3.15)
F(fs) - F
—J—‘—(—ji< M (), fv # 2 S1.f2>0; (2.3.16)
fa=- N
and
F(f)2 M(f,)f ifandonlyit 15 f,. (2.3.17)

We will sometimes need more detailed information about the strain curve
fur our results  For example, near the origin, we will assume that f admits the
expantion

fle) = e+ k'e? 4+ ofe), €10, (2.3 18)

for some constants k' > 0 and 7 > ' We will also assume that the inverse F is
bounded below

Fify> - kJf7, k> 0, v > 1, (2.3 19)

for all values of f > 0
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2.4 Regularly-Varying Functions.

The presentation in this section is, for the most part, ident” al to that given

by Pipkin {2.2].

Real material response functions such as G (¢} vanish for ¢t < 0 and are strictly
positive for t > 0. Because of the wide variation in both the values of G and the
time scales over which these changes take place, they are usually specified by graphs
on a doubly-logarithmic scale [2.3]. Let p(t) be the slope on a doubly-logarithmic

plot, for t > 0, of a differentiable response function f(t):

p(t) = d(in f(t))/d(Int) = tf'(t)/ (1), (24.1)

where f' is the derivative of J. We note that p(t) = pif f = ¢t? In the general

case, by integrating (2.4.1) we obtain

ln(f(ct)/ 1 (1)) =/ pltz)(dz/z). (2.4.2)
1

Then if p(t) approaches a constant value p, say, as { — oo, the integral in (2.4.2)

approaches plu(c), and thus

Jlet) ~ ePf(1), { — oo. (2.4.3)

Regularly-varying functions are those functions for which f(ct)/f(t) approaches a
finite non-zero imit as { — oo, and for any such function the limit is necessarily of

4

the form ¢” as a function of the parameter ¢, with —00 < p < + o0 (see Feller |2 4})

For such a function we write I'{f}) = p and say that p is the power of f

If equation (2 43) holds with p = 0 the function 1s slowly-varying We
use L(t) {to suggest a logarithm) to stand for any otherwise unspecified slowly-
varying function Then

Lict) ~ L(t). t - oo, (2 4 4)

12




and any regularly-varying function f(t) can be expressed in the form
J(ty = L(t)t? (2.4.5)

For many purposes L can be treated as if it were constant, even though it may
diverge to zero or infinity. For example, powers and products of regularly-varying
functions are also regularly-varying, with the obvious exponents. In particular, any

function which approaches a non-zero constant value is slowly-varying.

The assumption that p(t) (in equation {(2.4.1)) approaches a limit implies not
only that f is regularly-varying but also that [ is regularly-varying (unless f is

merely slowly-varving) If p(t) — p then from (2.4.1),

f'~pflt, p#0
t — 0. (2.4.6)

7' =ols/1), p=0

The exception for p = 0 occurs because when f is approaching a constant, /' may

be approaching zero much faster than 1/t

Op the other hand, when f is regularly-varying its indefinite integral f; is

always regularly-varying [2.4]. When f; diverges as ¢t — oo,

t tf(t)
fi(t) = / f(r)dr ~ RGN

- p=P(f)> -1, t — oo, (2.4.7)
0 (p+1)

just as if f were actually a power. When p < —1 the integral (2.4.7) approaches a

constant and the tail of the integral is regularly-varying:

/ fle)dr ~ »U(‘) p < -1, { — oo, (2.4.8)

it [P‘*ll'

The result analogous to (2 4.6b) s
L) = ot fy). p= -1, t — o0 (2 4.9)
The presentation above, following Pipkin [2.2], is useful also for consideration

of functions which are regularly-varying at the origin. For, f(t) varies regularly

13
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at O if and only if f(1/t) varies regularly at oo (Feller {2.4]). Thus, these results apply
with ¢ — oo replaced by t — 0, for functions which vary regularly with power p at
the origin. In particular, the change of variables 7 — 1/7 in equations (2.4.7)

and (2.4.8) returns the same pair of integral results for ¢t — 0.

We add here a result that is needed later for the comvolution of two
regularly-varying functions. If f and ¢ vanish for ¢t < 0, and are regularly-varying

as t — oo (t — 0) with powers P’(f}) = p and P(g) = ¢, then

t 1 gt
r!q!
/ St = r)g(r)dr ~ ———————1f{l)g(t); P.g> -1, t = oot — 0);
0 (p+ g+ 1)
(2.4.10)
where
oc
p! =/ tPe”tdt, p> —1. (2.4.11)

0

To get this result, we use expressions like (2.4.5) for f and ¢ in the convolution
integral and make the change of variables 7 — t7. Then, the use of equation (2.4.4)

leaves a well-known Beta function whose value is the ratio of factorials in the result.
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2.5 Material Response Functions.

In the linear theory of viscoelasticity our stress relaxation function G (¢) gives
the time history of the stress (per unit mass density) in a viscoelastic material
which is subjected to a unit step in strain, ¢, at time t = 0 (see Pipkin [2.5]).
In spite of our normalization with respect to mass density, we will refer to G as

the modulus. For the nonlinear theory defined by equation (2.1.5) the stress is G (¢)

when f(e(-, t)) H (t), the Heaviside unit step function defined to be zero fort < 0
and one for ¢t > 0. The modulus is necessarily zero for { < 0, since the current stress
cannot depend upon the future strain; the input-output relationship between the

strain and the stress is causal. With this in mind, we write the convolution (2.1.5)

as:

t
o(z,t) = / G(t— 1)df (e(z,7)). (2.5.1)

We find it convenient to make operational use of such convolutions and we use the
following notation for convolution with respect to the time variable:
+ 00
!
(f xg)(t) = / g(t— 7)df(r). (2.5.2)
- Q0
The limits of integration extend to oo in the general case. We recall that con-
volution is commutative and associative, and that it also commutes with time dif-

ferentation:

(frg) =f'vg="[ g (2.5.3)

In formal operational use of the convolution, we use whichever of these is convenient
at the time. With this notation and these propeities of the convolution, we write

the nonlinear constitutive law in terms of the modulus, once and for all as:

o(z,t) = (G'+ f(e))(z,1). (2.5.4)

15

w, Ad

AT RIS

r . W Sy Vg o ) T T A W T Ty W oy v, -
0..'0.0 0 O o o «.0 N Dol .0. fdteds ..‘ 8 ‘t.l. 24030 ‘. Py ‘. X f"-"'

W, N

ol

¢

2 v _ e =

=

e - - e

-

R ar=ae~r—ar—



>

"~' » g W

4

o8 Vo

We consider moduli G which have a finite value G, at ¢t = 0 and which decrease
to a strictly positive equilibrium value G, as t — oco. In fact, we assume that G is
completely monotone for ¢t > 0; i.e., G is positive and decreasing, and it possesses

derivatives of all orders which satisfy:
("¢ > o; n=012,...; t>0. (2.5.5)

Since G, is nonzero, the materials we consider are viscoelastic solids [2.5]. It is

convenient to allow the elastic limst, in which case G(t) = G, H(t) = G . H ({).
These properties of G are enough to ensure the existence [2.5] of a

compliance J(t) which vanishes for { < 0, has a completely-monotonc derivative

J '+(t) for t > 0, and which satisfies:

(J'«G)(t) = H). (2.5.6)

The compliance takes a finite jump to J, = 1/G, at t = 0 and increases monoton-
ically thereafter since JL > 0. For solids J has an equilibrium value J, = 1/G,
which it approaches as t — oo. The units of J are the inverse of those of G; in our
case, J has units of (velocity)’z. Whenever we write specific forms of G or J, we

mean their values for t > 0, and leave implicit that they vanish for t < 0.

By operating on equation (2.5.4) with J ', using (2.5.3) and (2.5.6), we obtain

the constitutive law in terms of the compliance:

f(e(z,t)) = (J '« a)(z,¢), (2.5.7)

where we have used the fact that convolution with the Heaviside step function is just
an integration. Throughout this work we will use both versions (2.5.4) and (2.5.7)
of the constitutive law.
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Real material properties might be stated in terms of only one response func- ::
4
!,
tion, the modulus or the compliance. We now present some relations between the -
asymptotic behaviour of G and J, for the cases of t = 0 and ¢t — oc0. We sometimes :
assume that the difference between these functions and their initial or equilibrium |
limits is regularly-varying. We do so for ¢t — 0 and take for the modulus:

G(t) = Go(1 - x1(1)), (2.5.8) :
where x; is a positive regularly-varying function: :
x1(t) = L(t)¢P, 0<p<l, t— 0. (2.5.9) ¥,
The power p is restricted to these values since G must be completely monotone. "
Additionally, Xll must be completely monotone. Therefore, by equation (2.4.6) o
<]
{for p # 0}, so must L(t)t"'l. Since the product of two completely monotone ¢
4]
functions is again completely monotone (Feller [2.4]), any completely monotone ~
slowly-varying L(t) will do. One such function is |In(¢)]. ~« 'itionally, for p # 0,
L = 1 renders x;' completely monotone. If p = 0, then L' must be completely b
!
monotone. (
'
Similarly, we let the compliance have the form: -
&
J(t) = Jo(1+ x2(t), (2.5.10) h
$
G
and seek to relate xo to x;. We use equation (2.5.6) and the relation J,G, =1 to \
.y
obtain a Volterra integral equation for x,: :
X
X2 = X1+ X1 *X2- (2.5.11) '
»
y

This is asymptotically satisfied with xo ~ x;. For, according to equation (2.4.10),
we then have P(x;' * x2) = 2P(x;) = 2p, and the convolution is of higher order Lt
L
than x;. So, :‘
1
i
J(t) ~ Jo(1 + x1(t)), t— 0, (2.5.12) -
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and we see that G and J are approximately algebraic reciprocals for small ¢.

For t — oo, we present some results obtained by Pipkin [2.2]). These were
gotten with the use of the Tauberian theorems for Laplaze transforms [2.4] to relate
the time functions J and G to their transforms in the asymptotic limit. There
are two situations to consider which depend upon the time-dependent apparent
viscosity [2.5]:

t
n(t) = / (G(r) - G.] dT. (2.5.13)
0

This integral exists for all finite ¢ for the moduli we consider.

We consider first, the cases in which 5(t) is not slowly-varying. Here we

restrict attention to moduli for which G — G, is regularly-varying and write
G(t) = Ge(1 + x(1)), (2.5.14)

where now,

x{(t) = L{)t7 7, 0<p<1. (2.5.15)

Cases in which p > 1 are excluded from this class since we are considering viscosities
which are not slowly-varying. Complete monotonicity of G requires that p be non-

negative. The result is again that J is approximately the algebraic reciprocal of G:

J(t) ~ Je(1 = x(1)), t — oo. (2.5.16)

Now, when n(t} is slowly-varying, including all cases for which the integral in

(2.5.13) converges at infinity, the response functions have the forms
G() = Go(14 x1(1), J(8) = Je(1 = x2(1)), (2.5.17)

where we do not require x| and x9 to be regularly-varying . The relation between x,
and xo is:
n(t)

t t
[ xo(r)dr ~ [ xi(r)dr = ) t - 0. (2.5.18)
0 0 Ge
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This does not imply that xo ~ xj. However, if n(o0) < oo, the relation (2.5.18)
becomes an equality in the limit [2.2]. As a simple example of this case, let G
and J be given by (2.5.17) for all { > 0, and let x;(t) = exp{—¢t/T}. With the
- use of (2.5.6), we find that xo(t) = (1/2)exp{—t/2T}, which is clearly not asymp-
totic to x;. However, both integrate to T in the limit, and the limiting viscosity,

n{oc) = TG, is finite.

¥
2.6 The Constitutive Law: Some Properties i
]
& the Quasi-Elastic Approximation. N
In this section we examine the instantaneous and equilibrium elastic behaviour
predicted by our constitutive law for a nonlinearly viscoelastic solid. We associate A
with this behaviour two wavespeeds which are relevant in this work. We then present
an approximation to the viscoelastic constitutive law which treats the material as
i elastic with a time-varying modulus and compliance. For cases of a monotone input
function in the constitutive law and, separately, a non-negative input, we present .
simple bounds on the output function. -
Consider a perturbation strain history at a particular location z which vanishes !
fort < 0, jumps to €, at ¢t = 0%, approaches €, as ¢ — oo, and which is continuous, !
)
but otherwise arbitrary for ¢ > 0. From the coustitutive law (2.1.5), the stress is:
¢ "
o(z,t) = f(eo)G(t)+/ G(t—-1)fr(e(z,7)) dr. (2.6.1) !
ot "‘
. . . ¢
For t < 0, the stress is zero. Immediately after the jump, it has the value: \
a(z,0%) = [(c0)Go. (2.6.2) "
i
{
On the other hand, in the limit ¢ — oo the equilibrium stress from (2.1.5) is: \
t
o(z,00) = f(ee)G,. (2.6.3) .
.
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Equations (2.6.2) and (2.6.3) are the nonlinear elastic stress-strain relations which h
describe the instantaneous and equilibrium behaviour of our viscoelastic constitutive

law. In a theory of wave propagation in nonlinearly elastic materials, the slope of

a stress-strain curve at a point (e,0) gives the square of the speed of travel (the

wavespeed) for continuous disturbances having these values of stress and strain.

(The slope of a secant of the curve is the square of the speed for discontinuous solu-

tions (shocks}, which have jumps corresponding to the values of the stress or strain

at the endpoints of the secant.) For our nonlinear theory of viscoelasticity, we will

make use of the instantaneous and equilibrium wavespeeds at zero strain {1.5], which n
are defined, respectively, by:

U2 =1limG,f'(e)=G,=J]!
|0
(2.6.4)

U2 =1limG.f'(e) =G, =J] .
£l0

With the limiting elastic behaviour as motivation, we now present an ap- )
proximation which reduces the viscoelastic problem to one of nonlinear elasticity

for all time, with time-varying modulus and compliance. We call it the guasi-elastic \

- -

approximation; it amounts to approximating the convolution by multiplication in

either version of the constitutive law:

Y o e e

aq(t) = G(1)f(eq(t)) = (G x fleg))(1),

and (2.6.5)

feg(t)) = J(Hag(t) = (J ' *ag)(t),

where the z-dependence of the stress and strain is left implicit since it has nothing
to do with the approximation. We call any such function €9 or 0 which “solves” a
viscoelastic problem based on the use of this approximation a quass-elastic solution.
The relations (2.6.5) become equalities if the material is purely elastic. With this

20
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approximation, we treat the material as if this were true at all times by supposing

that G (t)J(t) = 1 at each value of !

In cases of a monotonically increasing input to eyther version of the constitutive
law, (2.5.4) or {2.5.7), we can obtain simple bounds on the output function Consider

first (2.5.4) written without the r-dependence as

t
(Gl'“f))(”:/ G- 1)df((7)) (266

-
If ¢ is increasing monotonically, then so is f{s}. and therefore df > 0 Now

satisfies G, < G - 1) < G, for —oxx < 17 <t so we have the general bounds
Gef(e() < (G's fle))(t) < Gof(s( 1)), —x <l < 4 (26 7)
Similarly, from (2.5.7):
Joo(t) < (J’ao)[l)<J,a(l), —00 < t < 4+00. (2.6.8)

If the input function vanishes for t < 0, then the lower bound on G{(f — 7) and the

upper bound on J(¢{ — 7) can be made tighter, with the result for ¢t > 0:

G(Of(e()) < (G'+ f(e))() < Gof(e(t)) (e

!

0,t < 0)
(2.6.9)

Joo(t) < (J *x0)(t) < J(t)o(t) (o

]

0,t < 0).

We note that the inequalities for the bounds in equations (2.6.7) to {2.6.9) become
equalities when the material is purely elastic. Observe that for the tighter bounds
given by equation (2.6.9), the quasi-elastic approximation serves as a lower bound
on the output stress and as an upper bound on the output strain. We also note that
the quasi-elastic approximation for any monotonically increasing input always falls

21
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within the general bounds [t s for such jnputs a rigourous approximation in that

bounds on the error thowever foose] are given

When the mnput function s known only to be non-negative

the upper bhound
m {26 7) and the lower bound n (2 6 &) are still vahid We derive the latter

(J’-a)il)»—/ ot 1)dJ(r)

0

-
J,o(t)y + / a(t ,~|.l"|7;d:

4]

> Jdoalt)

where we have used equation (22 4) to integrate out the jump u J  The result

. t
obtains since o s non-negative and J | s positive since 1t s completely monotone

The imequality 1y strict unless a(7) vamishes identically for all + < ¢ Simiuarly. the

upper bound in (2.6 7) results from (."+ < 0
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CHAPTER 3: STEADY WAVES

3.1 Governing Equations.

We study steady waves. These are disturbances of unchanging shape which

propagate with a constant speed. In one space dimeusion,
u(r, t) = a(t - z/U") (311

describes a wave of shape @ which travels with the constant wavespeed U7 W ith
[" >0, the wave travels “to the right,” in the positive r-direction for increasing

time t We call the quantity  defined by:
n(z. t)=t-z/U (3.1.2)
the retarded time.

If the displacement u(z,¢t) is given by (3.1.1), then the strain ¢ and the veloc-

ity v necessarily have the same form:

o(n) =4'(n) -Ué(n), (3.1.3)

where the prime denotes differentiation with respect to the argument. To show tha’

this 1s also true for the stress 0, we use equation (2.5.1) to write

t
olz, 1) =/ Gt - r)d/(é(q(z,7))) (3.1.4)

- 00
We use the fact that { — 7 = gz, t) — g(z.7). followed by the change of vari-

ables p(r,7) — 1 to obtain

n(z.t)
szt = [ Gniet) - 1) dr(e(r). (3.15)

— o0
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Therefare, the stress as also a function of the retarded tin e

ln the rest of this work, the displacement stramn and velooite as well as the
stress wiall always be functions of the retarded time and for notational siph.
ity wall be denoted by u(t) ete The derivatives of these functions will b denated

by w1 ) and sooon

Wenow derive a nonhnear ordinary integro-differential equation and an mitial
comdition which describe the propagation of steady waves of strain 1in nonhnearly
viscoelastic solids which oeeupy all of one-dimensional space for all time A~
first step. we use quantities hke (3 1.1) an the momentum and compatibibity equa-
tions (2 1 3) and (2 1 4) to relate the stress to the strain With the notationa)

conventions above. we obtain
1 re . ~
o {(t)=U%e (1) (316)

Recall that our stress and strain are perturbations on a quiet state of the material.
In the distant past of physical time, and at places far ahead of the current position
of the disturbance, the strain and stress are zero. In terms of the retarded time. this

imposes the conditions

im €(t) =0 and lim o(t)=20 (3.1 7)

t— - 20 t— - oc

Using (3.1 7), we integrate {3 1.6) from —oo to ¢ and obtain:
2 .
o(t) = U“e(t). (3 1.8)

We now substitute for the stress in (3.1.8) from the constitutive law (2.5.4) The
result s

e(t) = UTHG "+ f(e))( ). (3.1.9)

24
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I instead we use equation (31 %) for the stress n the constitutive faw (25

¥

ohitam

Fl-0t) 0 "0d e it (31 oy

Fquations (319 and {3 1 10} are equavalent statements of the nteprs differential
relstion which deseritbes the propagation of steady stram waves o the materigls
we constder W call a function () a4 selution of our problem o 1t ~atishes cqua
Gien (3 0 9) and the anstial condition (31 71 M such a solution exists the corre
spotdiny stress s obtained directly from equation (38 %) the velooity frooan (31 3

Ihe displacement s gaven by
1t

ult) - l'/ s{r)ds < (410 1

For the functions we consider (§82 1 and §§2 2). thys integral 1s well-detined for all

hinite

3.2 Steady Wave Solutions in Linear Viscoelasticity.

We prepare to study the steady wave problem for nonlinearly viscoelastic ma-

terials by first considering che linear problem in which the strain curve 1s f{e} = ¢
Sty = U3 e e)(t). e(- o) = 0, S <t < 4o (32 1)
This svstem has continuous solutions
e(t) ~ et te) Cx o<t < 4, (42 2)
where foas an arbitrary time shift and for which the “rise time™ 1/r satisfies
U ed(r) - 1. (321
where
- 0
rJ(r):/ e T dJ (1) (32 4)
0
25
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Fhvanteyralb o (702 4 s the Laplace - Stieltyes transform of J with the real transform

saoabbe e egquanadently  J oas the Daplace transform of J 0 0t s well detined wath

b v o thee  omphiances J owe consider (58200

Mo now show that there s w unmigue telationstip between all positive values
ooaned the poositive values of Eowhch satinfy equation (32 3) U sing the standard

te ot o the liits o sk transforms we have

L rdory i Jity [

X foe )

lith raftrd i J () J, v, -

M N

whore we have gsed vgquations (26 4) to relate these himits to the 1nstantaneous and
cavihbrnm wavespeeds Now dd S Gamplies that rJ{(r} 15 (completely) monactone
a-afunction of 72 40 thus the relationship between r € (0.0 ) and U7 € (U, U,) s
v teone Contimuous solutions to (3 2 1) of the form (3 2 2) therefore exist oniyv

it these values of T

We now consider discontinuous solutions to equation (3.2.1) We call such a
solution a shock if 1t possesses a finite jump discontinuity of the form (2.2.2) If the
solution s contimuous butats derivative has a jump discontinuity. then we call it an
agcreleration wave. if such a discontinuity appears in a higher order derivative, the
solution s a higher order dcceleration wave 1t us well-known {3.1] that shocks can
form in finate time o elastic materials which obev a nonlinear stress-strain relation
~iunlarly . the equations governing lineariy elastic media can support traveling shock
solutions provided the discontinuity s an the imitial data of the problem . these
disturbances travel at the constant wavespeed U where 0 = [ "¢ 15 the huear
stress-strasn relationship We now show that equation (3.2 1) governing steady
waves for the theory of linear viscoelasticity admits non-negative discontinuous
solutions among the class of functions possessed of a LLaplace transform if and only

26
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if the material s purely elastic Sufliciency s immediate, since the problem reduces
to the himear elastie problem  Necessity s obtaimmed 1o the following We seek a non-
nevative solution « which vamishes for ¢t < 0 n the class of functions considered
We transform equation (3 2 1), using equation (3 2 4) along with the fact that the
transform of the convolution s the product of the transforms of the convolved

functions and obtan

Sis) = U Tsd(s)7(s). (32 6)

where s s the complex transform variable For e > 0 and not identically zero. €(s) 1s
an analytic function of s which is real and positive for all real s > r, . forsome r, > 0
Fherefore, sJ{s) = ' "% on the segment s > ro. Its unigque analytic continuation to
the whole complex plane s sj(s) = /7% this inverts to give J(t) = U_":H(l). We
conclude that non-negative steady shocks and acceleration waves which vanish on
the interval (- oc,0) and possess a Laplace transform exist in the linear theory of

viscoelasticity only for purely elastic materials.

3.3 General Characteristics of Nonlinear Steady Waves.

We now consider non-negative solutions to equation (3.1.9) governing non-
linearly viscoelastic steady waves subject to the initial condition (3.1.7). In this
section we assume the exastence of these solutions. As motivation for our investi-
vation. we first take a geometrical approach to this system. We then derive a set
of necessary conditions on a solutions” behaviour These conditions are presented
i oa hist of general characteristies of nonlinearly viscoelastic steady waves. We call
them properties In some cases. they are statements of nonexistence. The proofs of
these properties follow their summary We then use these results along with some

results from the previous section to estimate the graphs of solutions.
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Consider equation {(3.1.9) written in the form:
U?c = G+ fle). (3.3.1)

From equation (2.6.7), we have that for monotonically increasing strains ¢, the
stress '« f{¢) is bounded below by G.f(¢) and above by G,f(¢). On a graph
of stress vs. strain, this stress always lies between its equilibrium and instanta-
neous curves  On such a graph, the left side of (3.3.1) is a line with slope U*
passing through the origin; the wavespeed U is a parameter in the problem. Con-
sider Figure 3.1 and recall the definitions of the equilibrium and instantaneous
wavespeeds. ', and U,. given in equation {2.6.4). We will see that the value of U
in relation to Uy and 'y, determines the nature of the solution ¢. From the graph
in Figure 3.1 and equation (2.6.3), we expect that a solution has an equilibrium
value where the line intersects the lower curve. Similarly, with equation (2.6.2), a
solution should exhibit a non-zero instantaneous (discontinuous) response if the line
intersects the upper curve other than at the origin. These properties are among

those of our desired solutions. We prove that:

1. If €(t) is a steady wave solution such that e(t) — €, > 0 as t — oo, then the

equilibrium value, €., is the unique non-zero solution to
2
Jle,) =U“J.e,. (3.3.2)
If U > U,. then €, i1s strictly increasing as a function of U.

2 There are no non-negative solutions possessed of a non-zero equilibrium value
if {” < U/, hence, the only non-negative monotone solution at these wavespeeds
is the trivial solution ¢{(¢t) = 0. If U > U,, then a non-trivial non-negative

monotone solution has a finite equlibrium value €, > 0.

3 For all values of U, if ¢(T) = O for some finite T, then ¢ = 0 for all t < T.
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4. Any jump discontinuity satisfies the shock condition: )
Af
-~ =vly,, (3.3.3) r
Ace »
»
which, for our strain curves f, means that any steady shock travels at a wave- Y
speed U > U,. .
\
5. f U > U,, then any non-trivial non-negative solution € cannot be globally :
continuous. It must exhibit one and only one jump discontinuity. This .
jump, at t = 0 (say), is from zero to €,, the unique solution to _
”
fleo) = UlU,es. (3.3.4)
-
L
For all t < 0, ¢(t) is identically zero. As a function of U, g, is strictly in- .
b
creasing. Additionally, €, € €., with equality if and only if the material is t-’
elastic. ;
”
6. If ¢(t) is a non-trivial continuous solutior which vanishes for, say, ¢ < 0, L
Wy
then U = U, (i.e., U, is the wavespeed for acceleration waves). 0
[We
\
We first prove Property 1. It is convenient to use the equivalent formulation N
-
of the problem given in (3.1.10) written as: -’
%
o0 »
f(e(t)) = U2/ e(t —1)dJ (7). (3.3.5) v
'
0 ™
»
I e(t) - €, > 0ast — oo, then we obtain (3.3.2) as the limiting form of (3.3.5),
\JM
{
since fooo dJ(7) = J,, according to (2.2.5). From the properties of f (§§2.3), non- ..:
e
v
zero solutions to (3.3.2) are unique and increase strictly with U when U2Je > 1, i.e., :‘:
‘.g‘
when U/ > U,. ]
3
We remark that one could also pose our problem as a search for steady waves \
>
having a given non-zero equilibrium value, since for a given a compliance J and a '|=
h
i)
particular €, > 0, the squared wavespeed U?is uniquely determined from (3.3.2). g
\
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Figure 3.1. The instantaneous and equilibrium stress-strain curves and the
line UZe.

To prove Property 2, we observe that the unique equilibrium strain from equa-
tion (3.3.2) is zero when U < U, for our strain curves f. Thus, there are no non-
negative solutions with non-zero €, at these wavespeeds. Since a solution € vanishes
as { — —o0, it can be monotone and vanish as { — 4 oo if and ounly if it is identi-
cally zcro. Now, suppose that €(¢) is a non-trivial non-negative monotone solution
to (3.3.5) for some value of U > U,. We use the upper bound on the convolution

given in (2.6.8) to write

S(elt)) < UBJ,e(0). (3.3.6)
30
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Recall (§82.3) that m(e) = f(e)/e is strictly increasing from m(0) = 1. As such. it
has a strictly increasing inverse m~ !, defined for m > 1, such that ¢ = m_l(m).

with m_l(l) = 0. We use this in equation (3.3.6) to obtain
e(t) < m_l(UzJe) for all ¢. (3.3.7)

If €(t) is a non-trivial non-negative monotone solution, equations (3.1.7) and (3.3.7)

imply the existence of a finite limit e, > 0 for t — oo. O

Property 3 follows by considering ¢(T) = 0 for some finite . The integral
in (3.3.5) must vanish; with dJ > 0 and for ¢ non-negative, we conclude that €( ¢)

must vanish forall t < T. .

We now prove Property 4. Suppose € has a countable number of jump discontij-
nuities Ae; = e(t:') - 6( ), for i = 1,2, ..., where the ¢; are labeled in increasing

order, and the superscripts + and — denote limits to the point from above and

below, respectively. Using equation (2.5.3), we write {3.3.5) as:

t
F(e(t)) = U2/ J(t - 7)de(r). (3.3.8)
- 00
Consider the k-th jump; for t < t;, we have from (3.3.8):
¢
1) = U2 J(t-t)ae; + U2/ J(t—r1)e'(r)dr, t<t, (3.3.9)
i<k -®

for which we recall that J is zero when its argument is negative. Similarly,
2
f(e() = U2D_J(t~t;)0e; + U / J(t—r)e'(r)dr, tp <t < t41{3.3.10)
i<k
In the limit as ¢t | ¢, in (3.3.9) we have that

-
f(e - 22_] JAae, + U /kJ(t;—r)s’(r)d:,(s.a.ll)

)
i<k

and as t | t; in (3.3.10):

[ty =U 2y Ae,,+U2ZJ(t+—t)Ae +U / J(tf - 1)e'(r)dr (3.3.12)

i<k
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where we have used J, = J(0"). We subtract (3.3.11) from (3.3.12), and use the

continuity of J for ¢ > 0 to cancel the summations. The integrals also cancel, since

the integrands differ only at the single point {;,. We are left with:

(3.3.13)

which is the desired shock condition for the #-th jump discontinuity. Geometrically,
Af/Ae is the slope of the secant on the curve f(€) connecting the values of €
which comprise the jump. Now when both et and €~ are positive, we have from
equation (2.3.7) that this secant’s slope is larger than one, since m > 1. If one
of €T or €™ is zero (say € ), then A f/Ac is the slope of the secant from the origin
to the point (€+,f(s+)), and this slope is also greater than one for non-zero et.

Therefore, U2Jo is strictly larger than one. This is equivalent to U > U, which was

to be proven for any shock wave. O

To prove Property 5, we first show that if € has non-zero values for U2Jo > 1,
then there is a “forbidden set” of values which it cannot have. We fix the current
time ¢t and assume there is a non-negative function € which satisfies equation (3.3.5)

and whose current value £( t) is positive. We integrate out the jump in J and write:
o]
f(e(t)) - U2Jae(t) = U2/ e(t-1)J '+(‘r)d1. (3.3.14)
0
Since the integral in (3.3.14) is non-negative, we have
Fe(t)) = URd,e(t) > 0. (3.3.15)

For U%J, > 1 and for our functions f, relation (3.3.15) is satisfied as an equality
by a unique value ¢,, according to equation (2.3.3). As a function of U, &, is
increasing due to the the characterization of f given in (2.3.4). From (2.3.9), the
left side of (3.3.15) is positive for € > €,. Values of € € (0,¢,} are forbidden since
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they render the left side of (3.3.15) negative, in view of (2.3.8). Therefore, at any
time ¢, either ¢(¢) = 0 or €(¢) > €, in (3.3.14), when U2Jo > 1. We conclude

that the solution is not globally continuous (unless it is identically zero); it must

PP

jump from zero in order that it have non-zero values. By Property 4, this jump
must be to the value €,. If €(t) = €, in equation (3.3.14) when ¢t = 0%, then the
'y
/]
integral must vanish at 0. For non-negative solutions ¢, we must have e(r) = 0 ;
‘3
for all + < 0. Furthermore, this jump discontinuity is the only one possible, since
equation (2.3.7) implies that a jump originating from and ending at values of € not
in the forbidden set must travel at a wavespeed greater than the value of U which >
v
produced the jump to €,. Such another value for the wavespeed would contradict ,
§
Property 4; any other such jump cannot belong to the same steady wave. Finally, it
is a trivial consequence of Property 1 and the characterization of f given in (2.3.4) :
i
that €, < €. If the material is elastic, then J, = J, renders €, and ¢, identical and !,
"
this is not possible if the material is not elastic. ]
. v
To prove Property 6, we use the assumed properties of € to choose a sequence :
of times {¢;}}7 | with ¢; | 0 such that, for each k: :
e(ty) = max e(7). (3.3.16)
r<tg
From equation (3.1.10), we have: X
.
2 1 .
S(e(ty)) = U(J " x€)(tg). (3.3.17)
Since ¢ vanishes for t < 0, equations (2.6.9) and (2.3.4) imply that ¢
: :
m (e(ty)) € U%J (), (3.3.18) b
with equality only if the material is purely elastic. Ia the limit as ¢, | O (and :
¢
therefore as € | 0), we have y
f
'
1=m(0) < U%J, = (U/U,)?, (3.3.19) *
M
33 :‘,
v
s
.'\
LY
!
g AT N AT N I'J“y"i'v'fr,ffrt' \7 WY W i .--rt.n T4 v, LT,
! ’ " ' o ’ . ‘- * ) Iv " ’ ,\f.".~f~'." Ql . .~ ~ N ,t. §, .'\.. ¥ X & .‘ 'y u. A :“.".‘.‘ X e X) ‘.



T R T R T RCTICTOYE YW T WY

with the use of equation {3.2.5). Since ¢ is assumed continuous, Property 5 implies ’
that U is not greater than U,; hence, U = U,. O

-

£

We now use the above properties to estimate the graphs of candidate steady :

wave solutions. For U > U,, a candidate solution is a shock which has a single

jump at ¢ = 0 and continuously approaches the appropriate equilibrium value. by
L]

At U = U,, we consider a limiting case of shock solutions as the parametric :

wavespeed is decreased to U, to obtain a candidate acceleration wave (or a higher "

order acceleration wave) which vanishes for ¢t < 0. For U, < U < U, a candidate

solution is continuous and increases from zero at negative infinity to ¢, as t — o0.

Since € must be vanishingly small as ¢ -+ —o0, we expect it to be asymptotic to A

a solution of the linearized equation obtained by setting f{¢) = €. From the pre- ¥
’

vious section, we know that there arc exponential solutions for these values of U. t

Thus, our candidate solution for the nonlinear problem is asymptotically exponen-

tial for t = —oo. The graphs of these functions for all values of U are shown in &
§

figure 3.2. ':
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Figure 3.2. Candidate steady wave solutions. From the top: the shock \
),
for U > U,, the acceleration wave for U = U,, and the continuous solution ':"
'
'

for U, < U < U,.
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3.4 The Quasi-Elastic Solution.

In section 2 6 we presented the quasi-elastic approximation to the constitutive
law  We use it heremn to obtain the quasi-elastic solution € for nonlinearly visco-
elastic steady strain waves. After we examine its characteristics, we discuss its

usefulness as an approximation to steady wave solutions.

In terms of the compliance, £Q satisfies the following algebraic equation at

ecach t:
fleg(t)) = UBI(tieg(1). (3.4.1)

We prove these properties of e

1. For U(‘EJ(t) > 1, there is a unique non-zero quasi-elastic solution €g.

If UJ(t) < 1, then eg(t) = 0.

2. The quasi-elastic solution has the correct equilibrium value and, for U > U,,

the correct instantaneous value.

3. €g is plecewise continuously differentiable and, where it is non-zero, it is

strictly increasing.

4. The quasi-elastic solution is an upper bound on monotone solutions to equa-
tion (3.1.10) for nonlinearly viscoelastic steady waves which vanish for

t < 0 (say).

5. If €9, and £g, are the quasi-elastic solutions corresponding to wavespeeds Uao
and U; for which Uy > Uy, then 5Q2(t) > EQl(t) with equality only at those

times where EQQ(f) = te(t) = 0.

The existence and uniqueness of ¢y (Property 1) follow {from the properties
of our strain curves f. (]
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For Property 2, the limiting cases of (3.4.1) produce the results in equa-

tions (3.3.2) aud (3.3.4) for viscoelastic steady waves. C
<
“
To prove Property 3, we recall from section 2.3 that m(e) = f(e})/e is piecew ise
continuously differentiable. Its inverse, m ](m), defined for m > 1 is also piecewise :
continuously differentiable. Thus, from equation (3.4.1) we may express £q directly
[}
as’ :
eq(t) = m™ L (U (1) for U g > 1. (3.4.2) .
The differentiability and monotonicity properties of m~! and J imply these prop-
erties of €g. C X
,
To prove Property 4, we recall from equation (2.6.9) that the quasi-elastic .
approximation is an upper bound on the constitutive law for monotone input func- ﬁ
;.
tions which vanish for ¢ < 0. Thus, from equation (3.1.10), we have for 2 monotone :
7
viscoelastic solution ¢ which vanishes for ¢t < 0: X
O
1,8
F(e(t)) < U2 (t)e(t). (3.4.3) e
3
o
However, equation (3.4.1) implies that UZ2J(t) = m(eg(t)), in the notation of "
-
section 2.3, and thus, o
]
J(e(t)) < m(eq())e(t). (3.4.4) v
bt
'
Using equations (2.3.8) and (2.3.9), we conclude that € < ¢g. O !
The proof of Property 5 follows from equation (3.4.2) and the monotonicity :‘,
...
)
of m_l. ] _.‘;
N
We note that the graphs of €0, determined by m~! and J,look much like those
of our candidate steady wave solutions shown in figure 3.2. If U > U,, then g "
is a shock which has a jump at ¢ = 0, from zero to m_l(U2Jo), from which it ¥
increases monotonically to e,. If U = U,, then €Q is a continuous acceleration K
]
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wave (of possibly higher order) which departs from zero at { = 0 and increases
monotonically to its equilibrium value. For the cases U, < U < U,, €Q is a shifted
version of the above acceleration wave; it is zero until some time ¢, > 0 which
satisfies (12J(to) = 1. It is obvious that for this latter range of U, such a quasi-
elastic solution cannot be a global bound for the viscoelastic solution which never

vanishes on an interval.

The quasi-elastic solution is attractive for a number of reasons. As it is the
solution to an algebraic relation, it is easily computed. For special forms of the
strain curve f, €o can be expressed exactly in terms of parameters of f aud the
compliance J. If f and J are given as interpolators of data, €g(!) can bedetermined

at any particular time ¢ from a numerical nonlinear equation solver.

The quasi-elastic solution provides an upper bound on the stress in a material
experiencing monotone steady wave motion; for, the stress is proportional to the
strain by equation (3.1.8), and €g is an upper bound on the strain (Property 4).
In the next chapter, we show bhow a sequence of increasingly tighter upper bounds
on the solution € can be obtained from £Q- Moreover, for some shock solutions
(U > U,), the quasi-elastic solution can be a rather good approximation in itself.
We have shown in this section (Property 2), that eg has the correct limiting values
at { = 0 and fort — oo. In Chapter 5, we show further that, for shock solutions, €Q

is asymptotically correct, as ¢t | O.
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CHAPTER 4: EXISTENCE & UNIQUENESS THEOREMS

4.1 Prelude.

In this chapter, we prove the existence of the kinds of steady wave solutions
we chose as randidates in Chapter 3 and we examine the uniqueness of such solu-
tions among certain classes of functions. The proofs we present for the existence
theorems are constructive. We can, therefore, use the method of proof to obtain
a numerical approximation to the solution. We build solutions from monotonically
convergent sequences of functions which result from an iteration scheme. Although
monotone convergence is generally slow, it has the nice property that each member
of a convergent non-increasing (non-decreasing) sequence of functions is an upper
bound {lower bound} on the limit function. We make these notions of monotone
convergence precise in the next section. In the following sections, we present the
iteration scheme and its properties, and we prove the main theorems on existence

and uniqueness of steady wave solutions.

4.2 Monotone Convergence & Bounding Sequences.

We denote by {j',,};l”:l a sequence of real-valued functions defined on some

subset of the real line. Consider such a sequence with members which satisfy:

N € ()< 0 < fa(t) S .00 £ fylt), (4.2.1)

at each ¢, for some finite real-valued function fy (subscript U for “upper bound”),
which is also defined where the f, are defined. At a fixed value of ¢, the se-

quence { fnl t”?:l is a non-decreasing sequence of numbers bounded above by the
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number fro () Such a sequence converges to a number we denote Ly f ) At
varnies, a real-valued funcuon f s defined on the set where the foare detines |l
bt function as the portwsse hmait of the sequence {f 1> pots bounded below

by cach member of this sequence and above by [0 for all values of £ where ot

defined

fi <[, < < [ < fr (422

Naturally, an analogous result holds for non-increasing sequences bounded telow

by a lower bound function f,

4.3 The Iteration Scheme.

A standard technique for the solution of integral equations [4 1] is sleralion.
The equation to be solved is arranged as an input-output system into which an
initial guess for the solution is fed. The resulting output function 1s then used
as a new input to the system and this process is repeated, generating a sequence
of functions. If this sequence converges to a function which satisfies the original
equation and any associated side conditions, the limit function is then a solution
of the problem. We apply this technique to construct a solution for the system of
equations (3.1.10) and (3.1.7) governing the propagation of nonlinearly viscoelastic
steady waves. We recall from section 2.3, that the strain curve f has an inverse F

We use this to write {3.1.10} as
s(t):l”(l/z(J'.e)(l))A (1.3 1)

From this we define the input-output system for use in iteration:

2
foutlt) = F(U (J ' ein)(t))‘ (4.3.2)
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Cwtty o F(T c L0 w12, (43 1)
’ We procecd with the proofs of a series of lenmmmas related to theateration scheme

which wall fead us to the mam theorems in the succeeding sections. Throughout, we
deunte by 7 the runnmeg Gime vartable and let £ be the current time. We begin with

’
A paar of feminas for the couvolution J 7w s

!
Lemma 4.3.1. If- 1~ monotone theuw J 7« - v monotone

roeoood W have

(./,-:’)lf}’ / S sy dd i) (4.3 4)
Sinee dJ > U the maonotonieity of < tmphes that of the integral, O

Lemma 4.3.2. Ifs.(7) > sy(7r) forall s <t with e, not identically equal to e} on

a set of positive measure, thea (J 0+ <.

l'ruufl

(J weo) ()= (J vty = (J v (52— 1)) (1)

:/ (5._,—:'1>(t—7)dJ(T)

0

since dJ > 0 and. by the hypotheses, the difference €2 — ¢ contributes at least a

fimite positive amount to the integral O
Now for the input-output system, we have the following lemmas.

Lemma 4.3.3. (a) If in equation (1.3.2) ¢;, Is monotone, then <4, is monotone.

(b) If ¢;, 15 continuous except for a finite jump discontinusty at { = O, then €4y, has

il

a finite jump discontinuity at t = 0 and is otherwise continuous.
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Proof: (a) The monotonicity of e, follows directly from the monotonicity of both F

and J '« e Statement (b) follows from the continuity of ¥, the continuity of J
m B .

for + > 0, and equation (2.2.4) for the Stieltjes integral. ]
Lemma 4.3.4. If e?n and e?n are not identical and 0 < sfn(r) < 5?“(7) for all
b
7 <t then 53“(!) < g ()
Proof: From the hypotheses and Lemma 4.3.2, we have
J b Y -
(J et ) < (I el V0. (135
Sinee Fis strictly increasing,
. L2 . 2 [ b
F (u (J’.si‘")(z)) < F(U (J " 5“1)(1)), (13.6)
and the result follows from (4.3.2) and (4.3.6). =

With the next pair of lemmas, we examine the output function obtained when
the input is related to the quasi-clastic solutior presented in section 3.4. The first
provides sufficient conditions under which the output function is strictly less than

the input function.

Lemma 4.3.5. If ¢;

in 15 monotone, vanishes identically for t < 0, and satisfies

einl7) > €g(7) for all 7 < t, then eoyy(t) < €5,(¢t), for t > 0, when the material is

not purely elastic.

Proof: By equation (2.3.9), we have for ¢;, > ¢g:
I(Ein) —>— m(EQ)Eilp (437)

We recall from (3.4.1), that m(eg(¢)) U2J(t), so we have,

J(el ) 2 URT (e (1)
> UL % ei)( 1), (1.3.8)
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where the strict inequality is obtained from the bound in (2.6.9) for materials which
are not purely elastic. Using F, the strictly increasing inverse of f, and the definition

of £4y4t, we obtain:
2 [
el ) > F(URIT xein) () = conl), (1.3.9)
which is the stated result. -

The next lemma gives suflicient conditions for the quasi-elastic solution to be

a strict upper bound on the output function.

Lemma 4.3.6. If¢;, vanishes fort < 0, is monotone, and satisfies €;,(7} < egir)

forall T < t, then g4y (t) < €g(t), fort > 0, when the material is not purely elastic.

Proof: By Lemma 4.3.2 and the bound in {2.6.9), we have the following inequalities:

(J ' w i) () < (v eg)(t) < J(t)eg(t). (4.3.10)

So,
coutlt) = F(UQ(J'*ein)(l)) < F(UQJ(t)eQ(t)) = ego(1) (4.3.11)
by the monotonicity of F and the definition of €o in equation (3.4.1). a

Analogous to the results of the two previous lemmas, we can provide suffi-
cient conditions for which the output function is strictly greater than the input
function and, separately, conditions for which we have a strict lower bound on the
output. We consider input functions which are related to €; {subscript L for “lower

bound”), which we define as:
e () = e, H (), (4.3.12)

where €, is the uninue value to which the solution jumps at t = 0 (if it does
so), given in equation (3.3.4), ard H(t) is the Heaviside step function. The next
lemma validates €; as a lower bound.
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Lemma 4.3.7. Ife;, vanishes for t < 0, is monotone, and satisfies ¢, (1) 2 € (7)

forall 1 < t, then €4, (t) > e (), fort > 0, when the material is not purely elastijc.

Proof: From Lemma 4.3.2 we have

(J s e)) 2 (" xep) (), (4.3.13)

with equality if and only if &;;, and £; are identical. Then, since convclution with

the Heaviside step function is just an integration:

(J’*Ein)(t) > J(t)e,

> JoeoH (1), (4.3.14)

for materials which are not purely elastic. Thus,

coutl ) = F(UQ(J'*ein)(t)) > F(U(‘)Joeoll(t)) =€, (1), (4.3.15)

from the definitions of €4y, €5, and €7, and the monotonicity of F.

Lastly, for the output to be greater than the input, we have

Lemma 4.3.8. If ¢;, vanishes for t < 0, is monotone, and not identically zero ‘

for t > 0, and satisfies e;,(7) < ey (7) for all 7 < t, then €4y () > €;,(t), where ¢,

is non-zero, when the material is not purely elastic.

Proof: We use the monotonicity of f and equation (2.3.8) to write:

(1.3.16)

flein) € fleo) = m{eo)eyy,

2

J,. and by

with cquality if and only if €;, is identical to ;. Now, m(e,) = U

ecquation (2.6.9) we have J,e, H {1} < (J'* €in)(¢), when the material is not purely

elastic. Therefore,

L =g —r—

fle()) < UR(J s e} (1)

44

2, b TS T P LR N ) " ot B% N FOI N L] N % ’\.”'\ ‘e "’y . 38, 4§ """ W e e 3 *\»"" e % T T, ’b W
AN f“** ' ). - i. U A L LA A A ATy O } v. b .t.A WA ‘:?"n (S ihy " ':’-'




T U U S LN N VUV I URTOA IVUNCR

Using the monotonicity of F and the definition of €544 we obtain:

e () < F(UQ(J'* e-m)(l)) = e uilt), (4.3.18)

which is the stated result. O

4.4 U > U,.

We construct sequences of functions using the interation scheme (1.3.3) for
wavespeeds U > U,. We define an upper bound sequence to be a monotone sequence
of functions, each member of which is an upper bound on all succeeding members.
Similarly, a lower bound sequence is one for which each member is a lower bound

on all succeeding terms.

We first construct an upper bound sequence. We fix a value of { > 0 and choose
an input function €; which satisfies the conditions of Lemma 4.3.5 and is continuous
for t > 0. The first iterate €, satisfies €5(¢) < €,(f} from this lemma. Further-
more, this result applies for all earlier times greater than zero; we have €5(7) < ¢(7)
for 0 < 7 < t. We recall that eg(t) > €, (t) = oMl (¢t) for t > 0, with equal-
ity only at t = 0. Therefore, our starting function e; satisfies the conditions of
Lemma 4.3.7, with the result that €;(7) < e9(7) for 0 < 7 < t. Moreover, by
LLemma 4.3.3, €7 is monotone and continuous for { > 0, since €, is. By continu-
ing the iteration process, Lemma 4.3.4 guarantees that the succeeding outputs are
less than their associated inputs. We thus have a monotone sequence of monotone

functions which are continuous for £ > 0 and bounded below by £ :
er (1) enpt(7) S enl(r) £ .. < eofr) € g9(7), 0< 1<, (4.4.1)

with equality only at 7+ = 0 and only if €,(0) = €, (i.e., when the starting function

takes the value of the solution at { = 0). We similarly construct a lower bound
45
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sequence by starting with an input function which is continuous for £ > 0 and
which satisfies the conditions of Lemma 4.3.8, producing an output ¢, which is
larger than €; and, by Lemma 4.3.6, which is bounded above by €. The result
is a monotone sequence of monotone functions which are continuous for { > 0 and

bounded above by €g:

with equality only at 7 = 0 and only if £1(0) = &,.

From the discussion of section 4.2, we have that such upper or lower bound
sequences converge to limit functions which may, in general, depend upon the start-
ing functions. The following theorem guarantees that all such sequences generated

from our iteration scheme necessarily converge to the same function for U > U,

Theorem 4.4.1. Existence and Uniqueness for U > U,. If €,(t) is con-
tinuous for t > 0 and satisfies the conditions on €;, in either Lemma 4.3.5 or
Lemma 4.3.8, then the upper bound or lower bound sequence of functions produced
by the iteration scheme (4.3.3) converges to a monotone function which is the unique
solution to (4.3.1) among the class of functions which are continuous except for a
finite jump discontinuity at { = 0. Furthermore, these sequences converge uniformly

on the interval [0,1]) for any finite t > 0.

Proof: We first remark that there exist suitable starting functions, €, examples of
which are ¢/ and £4 for lower and upper bound sequences, respectively. We prove
that an upper bound sequence converges to a solution. The same arguments apply
for lower bound sequences. We denote by ¢* a function to which any upper bound
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sequence (4.4.1) converges. From {4.3.3) we have:

enpt(t) = lim F(U"’(J’*e,l)(c))

lim
n— oo n — oo

= 1"(U2 lim (JI*En)(‘))v

n-— oo

e () =

since I is continuous. Then by dominated convergence [4.2],
e*(t) = F(UQ(J N s*)(z)),

since the integrands are dominated by the first one in the sequence, and this first one
was chosen to be integrable. (For lower bound sequences, Lemma 4.3.6 provides the
bound.) Thus €* is a solution. This limit function is monotone since it is the limit
of a convergent sequence of monotone functions [4.2]. Now, a monotone function
can be discontinuous only if it has finite jump discontinuities {1.2]. Since €* is
a solution, it vanishes for t < 0 and can have only the single jump discontinuity
which occurs at £ = 0 (Property 5, §§3.3). Therefore, the monotonicity of ¢* implies

its continuity for £ > 0.

We now prove that the solution to (4.3.1) is unique among functions which
are continuous except for a finite jump discontinuity at ¢t = 0. We will show that
an assumption of two different solutions leads to a contradiction. We begin by
considering the difference |e; — €2|(t) of any two solutions, identical or not, at a
time { which is larger than the greatest time, say t,, before which the solutions

agree (all solutions at these wavespeeds agree until at least t = 0+):
{ 2 t
ey = e2l(8) = 1 F(UR(I  wer) (1) = F(UP(I wea)(0)) ).
| !
Uising equation (2.3.16) to bound the right side, we obtain:
| ¢
- el S MU eg) () URH( e ey = )0 PE {12,

with equality if and only if the convolutions are equal at t. Such an equality requires

either that e,(7) is identical to €4(7) for 7 < ¢, or that the difference (e; — €9)(7) is

47

B e e T e L N e T A

e —

AP T -



——T

LA an o anta aa o

| o' 4 L wW_ o
\. T "’,\ ~ 1-\,\

not of one sign, where it is non-zero, for 7 < ¢, in view of Lemma 4.3.2. With the

use of a triangle inequality, we pass the absolute value inside the integral to get:

cr—eall(t) < M(UP(I e eg) (D) UR(I v ey - eal)(t

with equality, now, if and only if €,(7) is identical to e5(7) for 7 < .

We now assume that ¢y differs from €, somewhere on [t,,t]. The continuity
of €1 and €4 ensures that the difference {e; — e5f achieves its maximum somewhere
on [t,,¢]. By hypothesis, e({t,) = €a(t,); hence, |e; — 2] is not equal to its maximum
on the entire interval, and we have the strict inequality:

leg — eaf(t) < M(UQ(J'* 55)(t))U2J(t — 1) max |e, ~ €a|(r). (4.4.3)

TE|t,,t]
In obtaining (4.4.3), we have also used the monotonicity of J and the fact thate; - ¢,
vanishes for t < t,. Now, €4 is a solution by hypothesis. We have from equa-

tions (3.1.10) and (2.3.13)}):

I 1

241 Y —

(4.4.4)

The inequality in (4.4.4) is obtained for increasing m since eg(t) > &, for t > 0

and m(e,) = U~” 2J,. Thus,
AI(UQ(J'*sﬂ)(t))UQJO< 1 forall t>0.
Since J (!} is continuous for t > 0, there is a time t; > t, such that
M(UQ(J'*EB)(I,))UZJ(tl—to)< 1. (4.4.5)

Using this in equation (4.4.3), we have

ley — e2(ty) < max |ey — e2](7). (4.4.6)
T€[t,, (4]
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Hence, the maximum occurs at a time t'l < t;. Equation (4.4.5) is also satisfied

at t’ and we have:

1

! 1
ley — e2l(t)) < ley = e2l(t))-

This contradiction follows directly from the earlier assumption that ¢; # ¢, some.
where on [f,,t]. We conclude that the solution is unique in the class of functions

considered.

Lastly, the uniform convergence on an interval [0, t] of the sequence of iteration

functions follows from the continuity of €* and each member of {en}zozl, according
to the following version {4.2] of

Dini’s Theorem. Let g, f;, fo,... be continuous functions on [a,b]

such that f; > fo > ... and fo(t) — g(t) as n — oo for all t € [a,b].

Then f, — g uniformly.

We note that Dini’s theorem also applies for lower bound sequences {f, :°=1 bv
considering the upper bound sequence whose members are g, = ¢ - f, converg-

ing to zero in the statement of the theorem above. This concludes the proof of

Theorem 4.4.1. C

4.5 U, < U < U,.

Recall in Section 3.3, we chose as a candidate solution for these values of
wavespeed a function which, for ¢ — oo, i1s asymptotic to an exponential solution
of the linear problem in which f(e) = ¢. With this in mind and, since solutions for
these values of I/ have no finite jump discontinuities (§83.3), we consider continuous
solutions of the form:

e(t) = w(t)e, (45 1)
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where w is continuous and satisfies

lim w(t) =1, (4.5.2)

t— - o0
and r is the unique solution to (3.2.3). For simplicity, and without loss of general-
ity, we have set the time shift £, in equation {3.2.2) equal to zero. We again prove
that upper and lower bound sequences from the iteration scheme (4.3.3) converge to
a solution of (4.3.1). We will also prove that the solution is unique among functions

which have the form of (4.5.1) for these wavespeeds.

We begin with the proofs of some preparatory lemmas, the first of which shows
that ¢™" (which solves the linear problem) does not solve the nonlinear problem.
Rather, it starts a decreasing (upper bound) sequence when ¢, = e in the iteration

scheme. Additionally, it is an upper bound for increasing sequences when ¢; < e,

Lemma 4.5.1. If €;,(7r) < €7 for all 7 < t, where r satisfies (3.2.3), then

Eout(t) < €™

Proof: From Lemma 4.3.2 we have

t

with equality if and only if ;, is identical to ¢"". Now,

D L] -
U we = Urd(r)e’ = ¢

)

since Urd (r) = 1. Therefore,
coutlt) = r(u"(J ', 5in)(t)) < F(e") < et
where we have used F{f} < f to obtain the last inequality. 0

To obtain a lower bound for upper bound scequences (and at the same time
a function which starts a lower bound sequence), we use the lower bound on the
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function F given in equation (2.3.19) and repeated here for convenience:
F(f)> [ -kfT, k>0, ¥ > L (4.5.3)
By using this bound when ¢, = e"!in (4.3.2), we find that
Eout(t) > e — kUZqrd (yr)e™™.
We note that
Uz'yrj('yr) <1 for ¥>1, (4.5.4)

when Ugr.T(r) = 1 because r}—(r) is completely monotone (cf. equation (2.5.3)
and §83.2). To obtain a lower bound for more general inputs, we consider input

functions at least as large as €, which we define as:
ep(t) = et - ce™, 7> 1, (4.5.5)

for some positive constant C. If we choose C to be the positive constant given by

k
C = — , 4.5.6
1 - Uz'er('yr) ( )

then ¢, is the desired lower bound, at least on some interval (—o00,t), according to
Lemma 4.5.2. If ¢;,(7) > €,(7) for all 1 < t, where r satisfies (3.2.3) and C is

given in (4.5.6), then there exists a finite t, such that eqy(t) > e,(¢t) for allt < ¢t.

Proof:
cour( ) 2 F(U2(J 'y eb)(t))

Il

F(ert - CU2'7r7('1r)c7”)
> et - CU2'1r—J_('1r)e7” - kcqn[l - (f7(/2'7r7('7r)e(7_1)"]7,

where we have used (4.5.3) to bound F and have factored 7"

out of the bracketed
quantity. This remaining bracketed quantity raised to any power v > 1 is a well-

defined positive number smaller than unity for t < ¢,. where

1(1(01727r7(7r))
ly, = — . (4.5.7
b (v- N)r e
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Therefore,
cout(t) > e — (CUrd (vr) + k)™, <ty

= Eb(t)’ t < tb',

by the definition of C. The time {, is finite for the constants considered. '

[

We still do not have a lower bound for all {, but we can use €, to construct
one. Observe that €, has a single maximum. We define ¢; to be the continuous

function equal to €, until its maximum and equal to this maximum thereafter:

EL(l)—{gb\t)r t< by, s <
Eb(tm): t > tm; (4.).‘)
where
In(yC
tm = ——(—)—. (1.5.9)
(v—1)r

We note that {,;, < ¢, since equation (4.5.4) and 4 > 1 imply that the argument of
the logarithm in (4.5.9) is larger than that in (4.5.7). We now assert that e, is the
desired lower bound for upper bound sequences and that it starts a lower bound

sequence upon iteration.

Lemma 4.5.3. If €;,(7) > €5(7) for all 7 < t and e; defined in (4.5.8), then

fout(t) > 51,(t)~

Proof: 1f e;, = €, then e54¢(t) > e7(t) for all t < t,, by Lemma 4.5.2. Fur-

thermore, €44, is monotone and continuous according to Lemma 4.3.3, since ¢ is
both monotone and continuous by construction. Therefore, e,y (t) > €, (¢t) for all

t > t,, ey, is not identical to e, , the result is immediate from what we have just

in

proven and Lemma 4.3.4. =

The foregoing lemmas of this section provide starting functions and bounds
for iteration, all of which have the desired properties (4.5.1) aud (4.5.2). We now

have all we need to prove the main theorem for these wavespeeds.
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Theorem 4.5.1. Existence and Uniqueness for U, < U < U,. If, for all realt.

g(t) = e"t where r satisfies (3.2.3), or if ¢,(t) = ep{t) given in (4.5.8), then the
iteration scheme (4.3.3) produces an upper bound or a lower bound sequence, re-
spectively, which converges to a continuous monotone function on (—oco,+o0). In
either case, the limit function is the unique solution to (4.3.1) among the class of
continuous functions which are asymptotic to et fort — —oo. Moreover, these

sequences converge uniformly on the interval (—oo,t] for any finite ¢t.

Proof: If ¢, = et

(ey = €r) the use of Lemma 4.5.1 (Lemma 4.5.3) followed by
repeated application of Lemma 4.3.4 shows that the iteration scheme produces a
decreasing (increasing) sequence of functions bounded below by e; (above by e}
according to Lemma 4.5.3 (Lemma 4.5.1). Each member of the sequence is mono-
tone and continuous according to Lemma 4.3.3, since €, is monotone and continu-
ous. Thus, the sequence converges to a monotone function €* on (—oco,+o0). This
fimit function is a solution to (4.3.1) by dominated convergence, as in the proof
of Theorem 4.4.1. Since a solution at these wavespeeds cannot have any finite
jump discontinuities and since a monotone function can be discontinuous only if

it has such discontinuities, we conclude that €* is continuous. Furthermore, " is

asymptotic to e"f as t — —oo since
et - ce™ < e'(t) < et < ty,

where (7 is given in (4.5.6) and {; in {4.5.7). Therefore,

To prove that €* is the unique continuous function having this asymptotic
property. we write €° in the form given in (4.5.1) and (4.5.2) to obtain a bound on
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any such convolution U<J '« e*:

a

US(J "« ) ()

U*- / (L= 7)dJ(7)

” oC
=e"U*/ w (t = 7)e " dJ ()
0

o0
< e max|w'(r)|(/'2/ e " dJ (1)
TSt 0
= ¢ max lw™(7)], (4.5.10)
1<t
since the last integral is r.7(r) and Uzrj(r) = 1 by the choice of r. Now. we

assume that there are two different solutions =y and £, and obtain a contradiction.
We consider the difference |67 — eo|(¢) as in the proof of Theorem 4.4.1; using the

bound in (4.5.10) we obtain:

ey — eal(t) < M (U v eg)(0) maxlwy - wal(r), 4 € {1,2},

1<t

with strict inequality since w; and wo agree at —co. When we divide by e"! and

use the fact that M decreases from M (0) = 1, we find that w; — wo must satisfy
[wy — wol(t) < max |w, — wal(7) for all ¢.
r<t

From arguments identical to those following equation (4.4.6) in the proof of Theo-
rem 4.4.1, we find that the assumption of two different continuous solutions leads

directly to a contradiction.

To prove that the sequence {s,.}':f:] converges uniformly to ¢° on any in-

terval (-~ f]. we note that |e, — £°|(1) < € since €,{7) and €°(7) are both

bounded above by ™" and below by zero For any & > 0 and for all n > 1 we

have [+, 17y < & whenever 7 <t where £ = (lud)/r Thus. the convergence

is uniform on (- x L] It > (, the uniform convergence on [f, . t] afforded by

Dini’s Theorem (K54 4) extends the result to (- > (] Ol
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4.6 U = U,.

For this particular value of wavespeed, our candidate solutions are continuous
and vanish for ¢ < 0. As before, our plan is to construct upper and lower bound
sequences of such functions and to prove that they converge to a solution of equa-
tion {(4.3.1). We will prove that this problem has a unique solution among the class

of continuous functions which vanish for t < 0.

We begin by deriving an equivalent form of (4.3.1) useful at this value of
wavespeed. We add and subtract JoH (t — 7) inside the convolution integral in equa-

tion (3.1.10) and evaluate the added term to obtain:

fle)= U J,e + US(J = Jo) « = (4.6.1)
Using l,/’:.lo = 1. we write this in terms of the reduced strain curve f(e) — ¢:
fle) —e=x"»c¢, (4.6 2)
where
J(t) - Jo
x(t) = ——H () (1.6.3)
Jo

i1s the normalized compliance which vanishes for { < 0; x is identically zero if and
only if the material is purely elastic. We note that the reduced strain curve is
monotone and. therefore, has an inverse, since f(¢) — ¢ = (m(e) — 1)e, each factor
of which is strictly increasing in €. We assume, as in equation (2.3.18), that there

are constants & > (G and 5 > 1 such that
fle) = = ~ ke, SN (1.6 4)
Iy terms of the secaled strarn u(t) defined by

\
u(t) = k1 1e(t). {4.6.5)

\J'\J' P “




we cousider the problem equivalent to (4.3.1) given by

u(t):G((x’*u)(t)), (4.6.6)

where G is not the modulus; rather, we now denote by G the strictly increasing

inverse of the reduced strain curve after scaling:
1 -
G(g) = ¢ L(g), L(o) =1, (1.6.7)

in which L is an otherwise unspecified slowly-varving function. Solutions u({t)
to (1.6.6) with (4.6.4) and (4.6.5) are solutions to {4.3.1). The corresponding iter-

ation scheme is:

11,l+l(t)=G((xltun)(t)>; n=1,2 .. .. (4.6.8)

1
The quasi-elastic solution vy = k77'eg satisfies

ug(t) = G(x(ug(t)). (4.6.9)

We continue with our now familiar attack on the problem. The iteration
scheme (4.6.8) is amenable to a set of statements analogous to Lemmas 4.3.3, 4.3 4.
and 4.3.6 which allows us to assert, without a redundant proof, that ug starts
a decreasing sequence of functions upon iteration and that it may be used as an

npper bound for an increasing sequence.

Lemma 4.6.1. [f vy is monotone and continuous, vanishes for t < 0, and satjs-
fies uy(r) < uQ(r] for all 1 < t, then ua(t}) is a continuous monotone function of t

and, when the material is not purely elastic, uy satisfies ua(t) < ug(t). fort > G

We need only exhibit a function u; which is a lower bound for a sequence

started by ugy and which starts an increasing sequence bounded above by uy. To
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do so, we use a lower bound on the normalized compliance x. Since x(0) = 0 and
its derivative is completely monotone (§§2.5), x is convex down. For small enough

times, it is bounded below by a line of slope a:

x(t) > at for 0<t<t,, (4.6.10)

where

0<a= < x'07) € x. (4.6.11)

We also use a lower bound on the function G given in (4.6.7). Since L(g) — 1
as g | 0, there are positive constants § and g5 such that

Glg) > ¢ /"1 - 6)  forall g < g, (4.6.12)

Furthermore, we can always take § < 1 since G increases from G(0) = 0. Using these
bounds on xy and G, we will show that a lower bound for decreasing sequences (and

a starting function for an increasing sequence) is given by
{ t1-1 t t
— ) rt7 4, < lr;
up(t) = { . r (4.6.13)
\

for small enough values of the positive constants r and ¢,.

Lemma 4.6.2. There are positive constants r and t, such that, ifu, is a continuous
monotone function which vanishes fort < 0 and which satisfies uy(7) > uy(7) for all
7 < t.with u; defined in equation (4.6.13), then uy(t) is a continuous monotone
function of t when the material is not purely elastic, and ugo(t) > uy(t) forallt > 0.

Furthermore, ug () > uwy(t) forallt > 0.

Proof: Fix ;€ (0,1) and let
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We choose a value of r < r; and define

i
up(t)=rt7- 1, (4.6.14)
Using the bound on y given in (4.6.10), we have

-1 2
tr-1

(X *u)t)>ar7 , 0<t<t,

v

From the lower bound on G in {4.6.12), there is a time {; > 0 such that

1/q
-1 _1
((X x ) ( t)) > (ar 7 ) tr-1 (1 - 8y), 0 <t <min{ty.ty}
v

> ur(t),
since r < ry.
Starting anew, we fix 6g € (0,1) and define
1 e
rQ = E"‘l(l - 6Q)7—l.
Now let u, be as in (4.6.14) with some value of r < rg- Recall that ug = Glyug)

Using the lower bound on y and the monotonicity of G, we have
ug(t) > G(atug(t)), 0<t<i,.

The lower bound for G ensures there is a tQ > 0 so that

(1) > (atug ()7 (1= 69), 0< < minftg.ty}.
Solving for ug,
L =
‘UQ([) > (al)"‘(l - 6Q)7"—1
2 “r(')v
sinee r < Q-

With the above results, we have conditions which allow us to ensure that ug > u.

and G (x "s+u,) > u,. We now pick values of r and ¢, which satisfy

r S min{rl‘rQ}

t, S min{tl,tQ,ta}
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and define uy {t) according to (4.6.13). If u; is identical to vy we have just proven

that uo = G(x "« uy) > u, for t € (0,¢,]. Since v is monotone and continuous by
construction, ug is, too, and the result is obtained for all{ > 0. For functions u; not
identical to u;, the resuit follows from what we have just proven and a statement
for this iteration scheme analogous to Lemma 4.3.4. Similarly, for these values of r
and ¢, we have up > uy fort € (0,¢r]. Since ug is continuously increasing, the

result holds for all ¢t > 0. O

We are now prepared to state and prove the main theorem for this wavespeed.

Theorem 4.6.1. Existence and Uniqueness for U = U,. If u|(t) satisfies the
hypotheses of either Lemma 4.6.1 or Lemma 4.6.2, then the iteration scheme (4.6.8)
produces an upper bound or lower bound sequence, respectively, which converges to
a monotone function satisfying equation (4.6.6) for the scaled strain u. The corre-
sponding strain ¢ from equation (4.6.5) is the unique solution to (4.3.1) among the
class of continuous functions which vanish for t < 0. Furthermore, these sequences

converge uniformly on the interval [0,t] for any finite t > 0.

Proof: The use of Lemma 4.6.1 (Lemma 4.6.2) followed by repeated application of
a statement for the iteration scheme (4.6.8) analogous to Lemma 4.3.4 produces a
decreasing (increasing) sequence of functions, each member of which is monotone
and continuous. The sequence is bounded below by u; (above by uQ) and, there-
fore, converges to a monotone function u* on (—o0o0,+o0). By dominated conver-
gence, u* is a solution to (4.6.6); the corresponding strain €* satisfies equation (4.3.1)

and is. therefore, continuous according to the arguments in Theorem 4.4.1.

Uniqueness of the solution is obtained from the original formulation (4.3.1)
in terms of F; the proof is identical to that given in Theorem 4.4.1. In this

case, we note that equation (4.4.4) holds, since €g(t) > €, = 0 for ¢ > O and
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- since m{0) =1 = U*J,.
Lastly, the uniform convergence of the sequence of functions on an interval [0 ¢
-
. follows from Dini’s Theorem, as in the proof of Theorem 4.4.1. —
..
W,
’l
. 4.7 A theorem for bounds via trial and error.
&
In the previous sections, we have exhibited means for constructing solutions
N
from sequences of functions which globally bound the solution, either from above or
L below. The first members of these sequences provide the loosest bounds. Moreover.
-~
he ! the lower bounds we used, ¢, and u,, do not resemble the global behaviour of the
e
- solutions. For the purpose of applications, bounds for the solution up to a time T
» can be useful if they can be made tight to some degree without requiring many
b~
: iterations in the constructive iteration scheme. The following theorem asserts the
-
s uscfulness of a trial and error approach to finding starting functions which provide
\'_; tighter bounds on the solution upon iteration. It allows us to make a guess for the
o starting function on an interval (—oo, T} and test its iteration. If the iterate moves
*
v
-
up {down) on the sub-interval (~o0,T}], for T £ Ty, then the iterate is a lower bound
-':\ {an upper bound) on the solution until 7. In what follows, we denote by z(t) a
-
_, generic solution, either the strain e€(¢) or the scaled strain u{¢) and we let ®(z,)
y - represent cither F(U2%J "+ en) or G(x '+ up,) as appropriate for the wavespeed under
b consideration.
~
4 Theorem 4.7.1. Suppose zy; (z;) is a known upper bound (lower bound) for a
"
N
solution to (4.3.1) and for which ®(zy) < zy (®(z;) > v ). Choose a nen-negative
.
;: increasing function z(!) which satisfies z{t) < zxy(t) (z,(t) > z.(8))
{I
4 . . R
- fort € (—oo,Ty| and which vanishes for t < 0 if U > U,, or which has the form
»
»
i of (3.2.3) ifU. < U < U,. If there is a time T < T} so that one iteration produces
;"o
4 60
)
»
e
~
A Ay A A A A A TR ot

e
N

WA SE LR S W "-.‘&'. "\.\;u_'(_ﬂ.' O
A g X y o R » A

y N S R AP VAT '-1




®(z,(1)) = zo(t) > zy(t) (zo2 < zy) forallt < T, then the chosen function r, starts

a lower bound (an upper bound) sequence which converges to a solution on (—~oc . T]

Proof: Consider the case for an increasing (lower bound) sequence. The first iter-

ate, ro, is bounded above by xy:

() < zp(t) = @(z4(1))

IA

Sz () < zy(t), t< T,

since r; < rgand z; < zyy for t < T < Ty, by hypothesis. Repeated application of

a statement analogous to Lemma 4.3.4 produces the increasing sequence:

I](t)SI2(l)<1'3(t)<..‘<1‘U(t), t<T,

at times where the functions are not identically zero. The same argument applies
with reversed inequalities for decreasing (upper bound) sequences bounded below
by r;. Convergence to a solution with the appropriate properties is proven from
the arguments in the proofs of Theorems 4.4.1, 4.5.1 and 4.6.1. (]
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CHAPTER 5: STEADY SHOCK

AND ACCELERATION WAVES

B
¥
’,
5.1 Problem Statement and Results. :
We first consider, in section 5.2, the explicit dependence of shock and accel- N
v,
eration wave solutions on the parametric wavespeed U. We show that (¢ U 1=
i
continuous in U for solutions which vanish for £ < 0. In particular, the acceleration ::
wave is the limit of shock waves as U | U,. Along the way, we show for two shock or .
.
acceleration waves having different wavespeeds that the faster wave is everywhere
N,
larger than the slower wave, after the initial jump. We conclude with a theorem ~
t
"
which is based on this result; it allows us to construct a solution for a wavespeed U "
: v
from a known solution at a different wavespeed U,, when both wavespeeds are at
, y
least as large as the acceleration wavespeed U,. \
“
~
.
In the next three sections, we consider the behaviour for { | 0 and t - o of
L
solutions €( ¢) for shock and acceleration waves; i.e., for values of wavespeed U > U,. .
We first obtain the small-time asymptotic forms of (¢} ~ €,, where €, is the non-
o
[ ]
negative value the solution takes at ¢ = 0%Y. When the strain curve f satisfies the "]
assumptions of section 2.3, the result obtained in section 5.3 for almost-all shork “
. (4
waves 1s: *
J
e(t) ~ €0 ~ ax(t), t]o, (5.1.1) .
.'
where ;'
)
£ (
a = _I&f_(_")___; ‘ (5.1.2) Y
['(eo) = (U/U,) !
(
and x(t)is the normalized compliance introduced in equation (4.6.3). Moreover, the 4
b
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quast-elastic shock solution has the same asymptotic form

FFEFXIFIFFL

Our small-time result for an acceleration wave, for which - O relies uper
the additional assumption that  (f) s regularlv-varying for £ ] 0 with power
P(x)=pe (0,1] We find that £(¢t) is also regularly-varying It power -

P{s) = g€ (0,oc). where

in which v is the dominant nonlinear poweran the reduced stram curve flo) -« for
small values of =, as in equation (4.6.4). In terms of the scaled strasn w( ), define

in equation {(4.6.5), the result we obtain an section 54 for aceeleration waves s

VLRV,

.
w(ty ~ (RA(l))174, tiao, (51 4
where
gt
= (5.1 3)
(p + q)
Here the quasi-elastic solution differs. The result is
.
uQ(t)~(\(t))7“, t]o. (5.1.6])

The final section, 5.5, is devoted to examples of shock and acceleration waves
constructed for specific materials from a numerical approximation to the iteration

scheme.
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5.2 Dependence of solutions on the wavespeed [’

W consider the exphcit dependence of solutions » on the parametric wase

speed Uoand we write 2080 07) We sometimes use the notate - () = -0t 1)

¢ have shown an Proaperties 1 and 5 of section 3 3 that the equibbrinm valu.
and for shock and acceleration waves, the mtial jump valoe are stoethy anervasine
functions of the wavespeed Tt as matura) to ask of such o statement o~ true foy
Shoek and avecleration waves for all times where the solution s won-zero Todeed e

I~ according to

Lemma 5.2.1. Amony ~solutions which vamish adentycally for ¢ < 0 af 1, < [,

then -0 ) < 2t Uy for allt > 0

Proof Solutions which vanish for ¢ < 0 are erther shock or acceleration waves an:
correspond to wavespeeds 17> U0 For such solutions. the difference e,(6) — ¢, ( ¢~
is continuous for t > 0. according to Theorems 4.4 1 and 161 Since e,(0] < €,(0)
for U7, < U, (§53.3). the difference e5(t) — €,( ) is either negative for all £ > 0. and
the proofl is complete, or it is zero at some finite time (, > 0. We will show that

the latter case is contradictory. We subtract the equations satisfied by ¢4 and ¢,
eall) — €5(t) = F(U:(J'-s,,)(t)) - (S e e)n)
< F(Ui(J " ea)(0) - F(UF( " v ep)0n),

since F is strictly increasing and Uy < Uy, by hypothesis Using equation (23 16

on the right side, we obtam:
2 / P2 '
ealt) — €,(1) < M((/b(J . 5a)(:)) U e (e = ) 0)

Now, assume that £, is the first time for which €5 — g4 is zero Since g4(1) ~ (1) < 0

for all 0 € 7 < t,, the convolution on the right side is negative. Furthermore, M i
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positive and we have at f
0o« ‘i.\!(’l,,"(-”'-l)lri)!','NJ C it
which contiadicts the assumption that - (7] | 0
We now use the results of the precedime lemmma vooprosve that <01 0 ) - oo

tinuous an I ounder restrrted carcumstances

Theorem 5.2.1. Amonyg solution~ whych vanish odentiowliv for b oot 0oy

continnons function of U In pacticular the ervvferatig wave wt i ot

it of shoch waves as LU

Proof W are agam copcerned with wavespeeds [ b d - cantin it

’

follows from showing that = (£ 0 Vs both mghtcontimuons and feftcontinuous wr f

We provide the details of the proof for vight-contimuty aond anebhicate parenthete b

a modification for the simlar proof of feft-continuity

\

For any [0 > [ we choose a eonvergent sequence of wavespeeds {0, .

for which ¢, 0 1" For each n, Theorem 441 guarantees the existence of a <hock

solution

S U= (U3 e an). nooo1n G2l

From Lemma 5.2 1. these monotone solutions form a decreasing sequence of fune.
i

tions. each member of which is bounded below by (6. 07) There s a monotone func:

tion (¢} such that e( 00y L <08) > (0. 0) We may pass to the it as o, U

im equation (5.2.1), since Fois continnous and the conpvolution tutegrands are Jom -

inated by (6 0) (For mcreasing sequences used an the proof of left-continuity

as U, 1 U, the integrands are dommated by the shock solution for any w avespeed

greater than 7)) In the limit, we have

F = (006 ()
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Henee 50t s a shoek solution and has its onty finite discontinuits at £ = 0 hefore
which ot samshes adentically, Since £ s monotone, it s continnouns for £ G Fro
the uniqueness of cach solutions provided by Theorem 4 1, we have - (1) Sty

and we have proven that
B < (00, — <0t (0 1)
Unll

W by prose that there s a function <8} such that for &0 17

b =t 07y — < (1) -t

ol
oo Pl continuons an D
Lo btan the aoceleration wave as the it of shoek waves for 80 0

folow the proof of rivht-econtinusty abiove wath the following arguments Sinee oa
tienotons terher of the sequence (- I,I',,)}: \ vanishes for £ < 0 and sipee the
Bt —chutiore - (0 can bbave no descontiaaities at wavespeed 0 we have that < t) )~
continuous and vanmishes for £t < 0 From Theorem 6 1, such a solution 1w unique

Henen

im0y - a4ty - st U
Fatl,

Femma 5201 spawns another result which 35, perhaps. more useful than the
theoreti al result of contimuity of solutions in wavespeed Tt allows us to use the
mformation g known solution at a particular wavespeed to generate the solution
at any other wavespeed. when both wavespeeds in question are at least as Jarge o~

that «f the aceeleration wave

Theorem 5.2.2. Suppose U, Uy > Ui are given, wath Uy £ Uy and et 00 = 1,

i the rteration scheme (4.3 °3) If the solution at wavespeed Uy v known to

be (1. U,) = e4lr) for 7 € [0.t]. then upon iteration, s, starts an upper bound fa
66




lower bound) sequence of functrons when Uy > U (U« Dy Ths sequence con- :
verges untformly on [0t to the shock or acecleration wave solution -, (1) e 1
Proof We prove the case U7 > U7 The same arvwments apply wath the tnegqualy -
reversed for Uy < Uy Suppose 7y > Oy and et - Syt the ateration selier, . !
Fhen for 7 ¢ {o.t] 3
. L2 I . L2 ' 5
-_.(r)rl‘(lh(.l -:‘,)17))(‘['(1(‘(./ --,,)l:)) S A E
where we have used the mnereasing nature of F to obtam the inequahity Repeat .
iteration prodoces a decreasing sequence which s hounded below by -0y aecara .
e Lemma 03 40 and the following mequality "
e F(0F e ) s F(CR )
b
since -, > <y according to Lemma 521 when ') > U The bounded decreas-
iy ~equence converges uniformly to the unique solution appropriate for the wave.
speed Uy > U, according to either Theorem 4 4.1 or Theorem 4.6 1 = .
5.3 Shocks as f | 0. N
L]
We hegin by deriving an equation satisfied by () — «, for £ > 0. We syh- :
-
tract f(-,) U7=J.,-, from each side of equation (3.1 10)
L2 ' , 2 . 3
(-0 - f(<.) U5« sj( [ (5
.
We then use (46 3) to write J () - .I,,[Il(f) 4 \(!)] m the convolution integra, P
(33 1) We obtan A
' o - ‘
JOA(0) = fen) = Ae(0) = o) + A(x "+ €)1, (5.3 2)
\
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whete

4%

Lttty NN fLoa A

MW w e ‘ . Hootr o the nteveal of T4 0 we b

vt R T Vo

I the ooy oo EW s egqiate s b e tioen (5321 we bty ar cquate o {1

] -

I A S A, Lt St s vy e M {4

whero we ave et fos A- Since s assumed toohave woprecewase continuou

derinative DA} oW anmay wrnite

GO L O () - S s Ny e i (H 4~ N
-

where Ioas a ~towhvavaryanyg function for whach L(0) 1 Fquation (53 1 wall Tead

Bt the result for alinostoall shock waves The exceptions ocenr at wavespeeds o

PR A

which f’h ) T [llr A X carresponding. for example to ponts A and B o
Foavwre 20 In practioe waves travelmy at these exact vafues of wavespeod have o

+ '

proboababity of bemye exerted na material nor do these cases prosent iy gntete-d

S VR4 LA Y

mathematical phenomena

L ]
Wi now <hoew that the deft side of equation {03 70 cquivalently  the .
LY
) »

left ~tde of (53 x). s an onereasing function of , wud therefore, anvertihds »
1

Ite  derivative  with  respect Lo is  positive, according to the relations
’d
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b me ) > o) Ao whieh follow from equations {2 4 6)

3), and the monotonierty of m Thevrefore we Ty v ert cguation

for, () aud winte

1) [..\u),‘,1(\’.,)u)]1,(‘.\m~ Ty e )

where a s given an equation (51 2},

and Lo o slow lvevaryiug function for whet /(o

Noow oconstder the himiting hehavionr of v aton (3 foor f

N '
the connveadution o« vanssh Porthermoero the oy ot

foor bavmaods Tihe cquation {26 9) provede thoa
. I
Ly, i)
) i
v )
are continuous. and synee o ovanishes

(e, gt
liin
Lo vt

oy thee resalt [ 9). we obtain
(1) . .
Lo - . . R

ton oy (1)

which s the result stated o equation (5 0 1) The same result apphies for the quas

chisti solution obGoned by replacing the convolution by multipheation in {43 w0

5.4 Acceleration Waves as | 0.

Woo st abitaan the asymptotic form of the quaseelastic soaled stram g (4

from it povermng equation, (46 9], using equation {16 7) for the function 7 S

ple aleebra vields

1 1

nglt) = (i) (Llug i)
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AR
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|f|ll\
e, )
i | T
’l !
vty !
w aeertedd G equaateen (0 6 oy s reenlachy vy e and iy BT
then Woyos o rovalorly v e powed l'lu,‘,,l s N R AT VR E TR !
it (18
oot gt v ettt enptession for w0 wiven an P51 f s e s e gt
cat [P P F R S R Partipos with Hoy Wy oo canstrus b o s e et s pe e
A AR TR NERE TN vt s s vervent sequens es of peoulariy ovaryane nppoet oan
Lo e b Vo vqpaeton 402 0 Loy for the convolution of rerabarhy svary e fun
ton I T P e lario o the st pterate as o, D
!
P e Y0t Ry ()
I ul'u) R

where Boas v o (08 5 and we have used (01 6) Eguaticon (54 3) imphies the

ottt of poative o nstants 4 oand £, such that

[
! . -
(1 Pl CF) iy -ul)(l)r'_(l+H)[.'ullt)‘ 0 < <ty 4

Herowfter we consedler cndy the apper bound mequabity o (54 1) for simphorty o
precentation the satme arguments apply to the lower banund  From the iteration
b foiy e wath 60 stetly anereasing Apphiny this and equ

teen L6 T to b b we han

R I I Ay A AT RN NN RN IR TEY o
Sinee L 1. there are constants Ay 5 0 for o 1.2 Csuch that
l,((\'.”,,)u))<(|Hs,,) 0w tet, (546
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Thus for 0 < £ <ty the bound in (5.4.5) may be written

wal ) < [(L+ )R] (14 6y (1), (547
Repeated application of (5 4.3), (4.6.8), and (5.4.6) produces the sequence of bound-

mye relations

IS U
wa () <((1+ 0)R)Y AF "
1 1 1
x (14 67" Y1+ 60" 2"'(1+(’n~1)’
< un (L (e w)0), TRy

Phe sequence {ug, (L) converges to a function u(t), according to Theorem 4.6 1
Simce Loas continunous and since the functions u, are dominuted by u,, . we have
- d

Lin s, - Ly «wu)asn — oo, As in {5.1.6). L(\’f u) 1s also bounded
1,((\'.11)(!)><1+600. 0 < t<yy (5.4 9}
Ve have gmphieat]y delined a convergent and, therefore. bounded sequence {6, ,”_1

et us detine

6 = sup{d,}. {(H 4.10)
n
Then.
———’—T L L . b+ by Aoy +
‘]“'\I'II (l“‘h'_’)j‘ﬁ. "(l+15n—1)714(\.‘un)<(1‘*’(5) ' L K
{5 4 111

UVsineg (5 £.101) i (5 4.8), we pass to the limit as v — o, and sum the geometric

sertes an the exponents to obtain the upper bound:

i) m+r))n]vﬂ(\+b) ‘nl(l) H<t<t, {h 412

From stmitar arguments for lower bounds on the iterates, there 1s a positive con-
! .
~tapt &0 < 1 for an analogous lower bound on w(¢) which, combined with equa-

o (5 4 12) provides

. R ult) . 1
(1 o'y a1« —f'—r——<(l+b)7"'(l+(})’ L <t <ty (5413

R uy(t)
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A~ f, | 0, the coustants b o and 0 can be taken arbatranihy sqall Thus, the
I

extreme members of (5013} tend to onity and we have

I,
wlt) ~ RV ug(ty t ] o (5 4.1 4
Sitnee we started with owy o= wg. equations (5 1.6) and (5.4 1) mmply the result
stated o oequation (51 1) From the assumption that s regulariy-varying with

power powe have that w, o uoand, henees s are regularh -svarving weth poswer g
.

Woenote that the asvmptotie relations for woand v, wnven i o juations (51 1)

vl (5 Tt respectively, are exact when the novmahzed coniphance has o

power-dan forme (1) v wath constants y, oand pooand the <train curve s
AN e h lr_\.‘ f{ ) coe ke
Uhe ntiad power of the aceeleration wave, P(s) -y = p/{ - 1). can be the

~ame for different materals characterized by their nonlmearity and comphance pa-
ratieters oand po The difference o sueh waves having the same aniual power s
cimbodied o the ratio of fuctorials. B For mraterials which are strongly nonlinear
(t stadl strains, 5 oas close to unnty and the power g oas large We use Stirling's

appr o simation (51 to the factorials for large ¢ and obtamn the asvmptotic form

SR
; Pt
P= - -
(p+ g
I)‘ f’", ’l o
R
gt g
r ) ;
N i - (f)w‘ |
qF
Recall that B does not appear an the quasielastic solution Fxcept for puren
ela~tie matersals (p = 0). the quasi-elastic solution 15 a very bad approsvmmation for

arerleration waves at small times when the material 1s strongly nonbinear at small

XX,

v
[

N

e e

Al

L A 4

2

R SO

;." ." o . .

v

LR NS

EJE

l. Y w "e vY

r':.: . .

~



v e s s 32D

SIS ]
.p.l.s

strains. However. for small ¢ (large ), expansion of the factorials yields

‘I
R~1- (T + (2!) )q, q — 0, (5.4.16)

where (p!)' is the derivative of the factorial function evaluated at p and
T = 0.5772 ... 1s Euler’s constant [5.1]. The quasi-elastic solution more closely ap-
proximates the solution at small times when the material is weakly nonlinear at

small strains.

5.5 Numerical Examples.

In section 5.4 we presented asyvmptotic results for acceleration waves which are
exact for a material having a specific strain curve and . power-law compliance. Such
a compliance grows without bound and cannot represent a viscoelastic solid for all
time. To better illustrate the global behaviour of acceleration waves in solids, we
consider the steady acceleration wave problem for a material having the normalized

exponential compliance

x(t)=x€(1—e“‘/"’) H(D, (5.5.1)
with the strain curve

fle)=c+ ke, k>0, v>1. (5.5.2)

In terms of the compliance J, the equilibrium value x, appearing in (5.5.1) is given
by

Xe = (Je = Jo)/Jo. (5.5.3)

We use a simple numerical approximation to the iteration scheme (4.6.8) to generate
approximations to a finite number, ', of terms belonging to upper and lower bound
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b el

sequences for the scaled strain of equation (4.6.5). We similarly generate such se-
quences for shocks in materials having either a power-law or expouential compliance

combined with this strain curve.

The governing equation for the acceleration wave problem is
gl ! [
(u(8))T = (x " *u)(1). (5.5.4]

The iteration scheme takes the form

uk'{-]:((xl*uk)(t))l/h{; k:()xl‘zvu'ej\’_l- (

N
o
[}

The bounding sequences are desired for ¢t € [0, T).

In order to perform the convolution on the iterates {uk}ll_‘:ll

. Wwe use a plece-
wise linear approximation to u; and convolve this approximation exactly with y.

We partition the interval [, T] into N subintervals of equal length given by

h=T/N. {5.5.6}
The piecewise linear approximation to a function ¢ on [0,T] is
N 1 I
LT (,O(t):(P,"*' ;((pi+1—s0;)-(t—ti), f,’_<_1§ll'_{l. (5.5.7)
where
t;=1th and ¢; = p(t;) for ¢=0,1,2 ... N. (5.5.%)
The iteration scheme for the numerical approximations is
N N 4 Nyl . . .
Wl = LY (), k=0,1,2, ... K -1, (5.5.9)
whoroe ”‘k\! (t) = I,f;{ uy(t). The upper bound and lower bound sequences we generate
v tarted with
w ()= LN ug () (5.5.10)
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w) (8) = Ly up (),

respectively, where ug is the quasi-elastic solution given by

ug(t) = (x(t))7-1, te(0,T], (5.5.12) X

and u; is the lower bound from equation (4.6.13):

1

wp(t)=rti-1, te(o,T] (5.5.13)

ST
o

For the strain curve considered, the constant r is r| in the proof of Lemma 4.

T

,:(ﬁ(ﬂ7—‘

1
Lk 5.5.14
) (5.5.14)

with the aid of equation (4.6.11).

r

From the numerical scheme, we generate the iterates ul

. at the mesh points ¢, K

4 . . .
Let go"\ be any one of the piecewise linear uiv Its convolution at ¢; is:

N

ty
f o' (t; - ) dx(7)

0

' 21, (5.5.15) ]

k=1

(x "« o™ )(E)

[T

"

where the k-th integral in the summation is given by

/ p [ty = 7)dx(7)

Ik =
te—1
ty c,o].v . —gpl.v_. ;
= {so,’-v_k+ : th : "(tk—r)}dx(r), (5.5.16) e
te—

in view of (5.5.7) and with the notation of (5.5.8). We put our results in terms

of the non-dimensional time ¢/¢t, appearing in equation (5.5.1) for the exponential

compliance. With the change of variables t/t, — {, we have dx{7) = x.e ' dr.

lising this to integrate (5.5.16) exactly, we obtain after simplification:

N N
lk :[(l — k)(pi—/c + k<P,'_k+1] '(Xk - Xk—l)

+ %(pﬁk+l — o) [+ kRyeTH (14 (k - 1)/;)(""‘)"].(5.5.17)
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The numerical scheme is now completely defined. It consists of equations (5.5.9).

{5.5.15}, (5.5.17), and either (5.5.10) or {5.5.11) to get started.

We remark that we chose this approximation to the exact iteration scheme
both for simplicity and since any continuous function can b: approximated arbi-
trarily closely by piecewise linear functions [5.2]. For a finite number of terms gen-
erated by this numerical scheme, we can get arbitrarily close to the exact iterates

by taking N large enough.

We present the results of this scheme as a series of graphs of approximations
to acceleration waves for three values of the nonlinecarity 5. In Figures 5.1-5.4

(t/1-7) v

we have plotted the normalized iterates uy x, s. t/t,. Figure 5.1 illustrates
truncated upper bound and lower bound sequences for v = 5/4. It shows iterates
1-25 of the upper bound (decrecasing) sequence started by up and iterates 1-30
of the lower bound (increasing) sequence generated by u;. For e>ch curve in this
figure, 201 points were used in the computations, whereas, 101 are plotted. The
large space between the truncated sequences is the numerical approximation to a
bound within which the acceleration wave is to be found. Our approximation to
this acceleration wave is illustrated in Figure 5.2 along with the quasi-elastic so-
lution for ¥ = 5/4. The approximate acceleration wave is the superposition of
the indistinguishable 47-th members of the upper and lower bound sequences of
the previous figure. Figures 5.3 and 5.4 illustrate the quasi-elastic solutions and
similar approximations to the acceleration waves for v = 2 and v = 5, respec-
tively. In Figures 5.2-5.4, all 201 points used in the computation of cach curve are
plotted. We note that the exponential compliance is regularly-varyving as ¢ | 0 with
power p = 1. The graphs {or these three values of v illustrate approximations for ac-

celeration waves which are regularly-varying for t | O with powerg = 1/{y—-1); these
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B
: waves have initial slopes which are zero (v = 5/4), finite (v = 2), and infi-
t
nite (v = 5). We recall from the previous section that the quasi-elastic solution
; is asvm ptotically incorrect by a multiplicative factor, for ¢ | 0.
.
»
3
L]
3
)
)
»
3
»
L)
3
, - - . . . .
- Figure 5.1. Approximations to bounding sequences for the strain acceleration wave

forv = 5/4 and an exponential compliance. The ordinate variable is (k/xe)(l/i'—l);.

The abscissa represents £/(,.
r
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Figure 5.2. The quasi-elastic solution (top curve) and the superimposed 47-tk

iterates in the upper and lower bound sequences representing the approximate nu-

merical solution for the strain acceleration wave with ¥ = 5/4 and an exponentia!

compliance. The ordinate variable is (k/xe)(l/'y_”e. The abscissa represents ¢/f,.
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Figure 5.3. The quasi-elastic solution (top curve) and the superimposed 15-th ]
iterates in the upper and lower bound sequences representing the approximate nu-
merical solution for the strain acceleration wave with v = 2 and an exponential )
.
compliance. The ordinate variable is (k/xe)(l/"_l)a. The abscissa represents t/¢,.
g
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Figure 5.4. The quasi-elastic solution (top curve) and the superimposed 6-th
iterates in the upper and lower bound sequences representing the approximate nu- 2
merical solution for the strain acceleration wave with v = 5 and an exponential :
. P . . . —_ Py . N
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We now consider problems for steady shocks in materials with strain curves

of the form (5.5.2). Our results are given in terms of u, the scaled strain of equa-

tion (4.6.5) normalized by its value at the discontinuity:
u(t) = u(t)/uy, = =(t)/e,. (5.5.18)

After we derive an equaton for u, we present graphs of numerical approximations
to its solutions based upon the scheme presented above for convolutions with an
exponential normalized compliance. We then modify the scheme for power-law
normalized compliances and present the graphs of approximations for shocks in

such materials.

To obtain the governing equation for u, we cancel f(e,) = Ae, from both sides

of equation (5.3.2) and use {5.5.2) explicitly for f:

k(e(t))™ = (A= L)e(t) + A(x"x€)(1). {(5.5.19)
{Recall A = (U/UO)Q‘) In terms of the scaled train, this is:

(2()" = (0 = Du(t) + A(x " *u)(1). (5.5.20)

We note that this equation reduces to {5.5.4) governing acceleration waves at A = 1.

For A > 1, the jump in the shock wave has the value:

1

uy = u(0) = (A — 1)1 1, (5.5.21)

since x{(0) = 0 implies that the convolution in (5.5.20) vanishes at t = 0. When we

divide (5.5.20) by ug, we obtain:

(F()T = w()+ (XY = w)(1), (5.5.22)
where
x(t)= (5.5.23)
81
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The correspouding iteration scheme for N terms in a4 sequence is
g I
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ipert0 = (o ) ke R TIEEY

We again choose the quasi-elastic solution to start our upper bound sequenees

]

,T(,(z):EQ(t):(11(1)+\‘(t))7-“ (5 5 25)

It is easy to show that a starter for a lower bound sequence is the Heaviside step

function:

w,{ty = uy (t) = H{t) (5020

For the exponential compliance in equation {5.5.1), our normalization «f the

solution by its Jjump value requires specification of the parameter

ﬁ
1)
P
~
o
I
-1

For any choice of ¢ > x¢ the normalized wavespeed being considered is:

¢
A= ——— (5.5.2%)
€= Xe
In what follows, we have choscn ¢ = 1 to illustrate shock behaviour depending on

the nonlinearity 5. This necessarily restricts the compliance to have an equilibrium
vahte x¢ < I however, this is not a severe restriction. Materials for which \, « 1
are nearly elastic; with small values of vy, the graphs in Figures 5.5 5.8 repre-
seut nuwmerical approximations to shocks at wavespeeds just above the accelera-
tion wavespeed in nearly elastic materials. Furthermore, values of y, approaching
unity represent more strongly viscoelastic solids having equilibrium compliances
near J, = 2J,, according to (5 5.3). For such materials, the graphs represent high

speed cases, A > .

B2
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Figure 5.5. Approximations to bounding sequences for the strain shock wave
for 4 == 5/4, an exponential compliance and ¢ = 1. The ordinate variable is ¢/¢,.
The absecissa represents t/t,.

Fioure 5 5 iHustrates truncated upper bound and lower bound shock sequences
for 4 /4. anadogous to Figure 5.1 for acceleration waves  Ilere we show
and the r-t 17 members of the decreasing sequence it starts, along with the st p
function, u [ nd the first 25 members of s increas vy sequence  Agan, 201 poinis
were used in o computation and 101 are plotted for cach curve  Figures 5.6 5 »
illustrate the quasi-elastic shock solutions and approximations to the shock solutions
for v = 5/4, 2. and 5, respectively. For these graphs, all 201 computed joints are
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plotted in ecach curve. For shocks, the quasi-elastic solution 15 asvmptotie to the
solution for ¢ | 0 (§85.1). It is evident from these figures that the quasi-elaste
solution is acceptable as an approximation for a quadratic nonlinearity with this
comphance; it is very good for 5 = 5. However, for 4 = 5/4. 1015 no better than o

loose upper bound, except in the small-time asymptotic region
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Figure 5.6. The quasi-elastic solution (top curve) and the superimposed 45-th
iterates in the upper and lower bound sequences representing the approximate nu-
merical solution for the strain shock wave with v+ = 5/4, an exponential compliance.

and ¢ = 1. The ordinate variable is €/e,. The abscissa represents {/¢,.
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Figure 5.7. The quasi-clastic solution (top curve) and the superimposed 14-th
iterates in the upper and lower bound sequences representing the approximate nu-
merical solution for the strain shock wave with v = 2, an exponential compliance.

and ¢ - 1 The ordinate variable is ¢/€,. The abscissa represents {/¢t,
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Figure 5.8. The quasi-elastic solution and the superimposed 6-th iterates in the
upper and lower bound sequences representing the approximate numerical solution
for the strain shock wave with v = 5, an exponeatial compliance, and ¢ = 1 Tt

ordinate variable is €/e,. The abscissa represents {/t,.
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For the exponential compliance considered thus far, we could have success-
fully used a piecewise linear approximation to the entire integrand in the convo-
lution; i.e., the familiar trapezoid quadrature rule [5.3]. We chose to integrate the
iterates exactly with dx in anticipation of the singular problems which we now

consider, involving the power-law normalized compliance:

. W T -

x(t) = xot?, p € [0,1]. (5.5.29) ;
’
i
The numerical scheme is modified by the evaluation of the integrals [, in equa-
. . . . . 1
tion (5.5.16). The non-dimensional time in this case is x,,/pt. We make the change
. 1 . - %
of variables xo/pt — tin (5.5.16) and use dx{7) = p7? 1d7. The result for I, after h
simplification is:
N N ¥
Ikz[(l—k)so,-_k+kso,-_k+1]'(xk—xk_l) |:
u
N N p +1 +1 !
—(Pi—ks1— Pioi) R (EPT7 = (k= 1)PT7). (5.5.30) ¢
P + 1 :;
For the numerical scheme using (5.5.30), we again generate upper bound :'
‘(
and lower bound sequences which are started, respectively, by L¥ ugQ and LTIY ug )
]
The resulting approximate solutions for shocks in a nonlinear power-law material :
are illustrated in Figures 5.9-5.17. These figures include all combinations of non- .
linearity v = 5/4, 2, and 5 with compliance powers p = 1/10, 1/2, and 9/10. For )
"
these figures, we used 401 points in the computations, all of which are plotted for ¢
-
each curve. We have removed the wavespeed from the the problem by plotting © f.
¢
4
against the non-dimensional time [Axo/(A - l)]l/”t. It is apparent from these figures ::
i
that, for the problems considered, the quasi-elastic solution is better as an approx- {f.
A
imation to the solution in a power-law material when the nonlinearity v is large, or :,
{
N
when the power p is small, or both. :c
i
K
2
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A Figure 5.9. The quasi-elastic solution (%“.p curve) and the superimposed 50-th
iterates in the upper and lower bound sequences representing the approximate nu-
merical solution for the strain shock wave with v = 5/4 and p = 1/10. The ordinate

variable is €/¢,. The abscissa represents [Ax,/(X - l)]l/”t.
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Figure 5.10. The quasi-elastic solution (top curve) and the superimposed
46-th iterates in the upper and lower bound sequences representing the approxi-
mate numerical solution for the strain shock wave with v = 5/4 and p = 1/2. The

ordinate variable is €/e,. The abscissa represents [Ax,/(A — l)]l/”t.
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Figure 5.11. The quasi-elastic solution (top curve) and the superimposed
41-st iterates in the upper and lower bound sequences representing the approxi-
mate numerical solution for the strain shock wave with v = 5/4 and p = 9/10. The

ordinate variable is €/¢,. The abscissa represents [Ax,/(A — 1)]l/pt.
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. Figure 5.12. The quasi-elastic solution and the superimposed 14-th iterates in the
3 upper and lower bound sequences representing the approximate numerical solution
for the strain shock wave with 4 = 2 and p = 1/10. The ordinate variable is e/¢,.
A The abscissa represents [Ax,/(A — l)]l/”t.
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Figure 5.13. The quasi-elastic solution (top curve) and the superimposed
14-th iterates in the upper and lower bound sequences representing the approxi-
mate numerical solution for the strain shock wave with v+ = 2 and p = 1/2. The

ordinate variable is £/6,. The abscissa represents [Ax,o/ (A ~ l)]l/pl.
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Figure 5.14. The quasi-elastic solution (top curve) and the superimposed
13-th iterates in the upper and lower bound sequences representing the approxi-
mate numerical solution for the strain shock wave with v = 2 and p = 9/10. The

ordinate variable is e/e,. The abscissa represents [Ax./(A - l)|'/”t‘
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Figure 5.17. The quasi-elastic solution (top curve) and the superimposed 6-th
j'. iterates in the upper and lower bound sequences representing the approximate nu-
5 merical solution for the strain shock wave with v = 5 and p = 9/10. The ordinate
-
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variable is €/e,. The abscissa represents [Ax,/(A - l)]I/pt.
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CHAPTER 6: SOLUTIONS BELOW THE

> ACCELERATION WAVESPEED

6.1 Prelude.

In this chapter, we consider problems for non-negative steady strain
waves, ¢(t), traveling at speeds slower than that of the acceleration wave, i.e., for
U< U,. We have shown in Chapter 3 (§§3.3) that there are no non-negative non-
trivial steady waves which travel at or below the equilibrium wavespeed U,. From
Chapter 4 (§§4.5), we know that when U € (U¢,U,) there are continuous solu-
tions €(¢) which are asymptotic to e as t = —oo with a value of r which depends

on U and the material compliance. In section 6.2, we consider the problem for such

a solution when the wavespeed is perturbed from the limiting value U,. We denote
* by 6§ a small parameter and obtain solutions e€(¢; §) which are asymptotically correct
as 6 | 0 when U? = Uf(l + 68). In section 6.3 we produce numerical solutions for all

wavespeeds U < U, in power law materials with quadratic nonlinearity.

! 6.2 U2 =UZ(1+¢).

Y
1
We first derive the leading term in an asymptotic series for e(¢;6) as 6 | O

1

when the strain curve f(¢) is specified no more completely than in equation (2.3.18).
'
: In order to obtain the next term in such a series, or to just estimate the size of the
1

next term, we need to further specify f. We do so in the rest of this section which
!
’0
:: we devote to strain curves which are accurately represented by a power series for
Y
J - . .
'.a small €. For these materials, we obtain the first two terms in the asymptotic series
'l

for € along with an estimate of the size of the third term.
“
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We recall that the governing equation is:

. f(e):Uz(Jl*e), (6.2.1)

'

" subject to

\

_ e(-o00) = 0. (6.2.2)

{ We leave implicit the dependence of € on § and we seek a solution € such that

; ¢

H e(t) ~ e, t =+ —o0, (6.2.3)
where r satisfies

: U%rd(r) = 1, (6.2.4)
according to equations (4.5.1), (3.2.3), and (3.2.4). We recall from equations (3.2.5)
and the discussion following them, thatr | 0as U | U,. Thus, ris a small parameter

g when 6 is.

X We proceed with expansions of both sides of (6.2.1) which will eventually

k)

)
result in an equation containing powers of the small parameter § from which we

st can obtain equations for the terms in an asymptotic series for €. Equation (6.2.3)

4 suggests the scaled time variable:

§ = rt. (6.2.5)

Throughout, we denote by hatted variables functions of #. For example,
e(t) = €(6)
(6.2.6)
J(t) = J(8),

and so on. Using equations (2.5.3) and (6.2.5), the convolution is:

(J'*s)(l) (J*e')(l)

0 -
| i maem

- 00

) -

[
=f J(6 - n)é'(n)dn, (6.2.7)

— 00
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;
} where we have used the continuity of ¢ at these wavespeeds (§§3.3) in the last line
\
* of (6.2.7). Thus, the governing equation (6.2.1) becomes:
o
;' 2/ 7 !
- F(€(0)) = U°(J » €)(0). (6.2.8)
» The change of variables § — 7 — 5 in the integral yields
‘. -~ w -~
2 (J xe')0) = / é'0 - n)Jd(n)dy. (6.2.9)
. 0
2 We use (5.1.8) to write
’ J(0) = J [H(0) — $(0)] (6.2.10)
-
:: in equation {6.2.9) and evaluate the first integral to obtain:
¢ .
‘ (J % €')(8) = Jeé(8) - Je/ E'(0 — n)Y(n)dn. (6.2.11)
N 0
!
:‘.. We assume that ¢ is sufficiently differentiable to do the following. We expand
x
: é'(6 — n) about § and obtain:
Fooal ® 1 2 o
(Jxe)0) = Jeé(o)—Jef [é’(o)—né”(o)+ S e )=+ ---]¢(n)dn- (6.2.12)
. 0 {
Let us define
w .
¢j=/ Y (r) dr; i=0,1,2,..., (6.2.13)
. 0
i so far as these moments exist. Then,
3 -
' - o1
/ nlY(n)dn = I v;. (6.2.14)
0
i:
)
¥ Using (6.2.13) and (6.2.14) in (6.2.12), we have:
y N ' 2 " 1 3 m
", (J « e )N0) = J | €(0) — rpoé (0) + r v €7(0) — E—‘-r Yol (0)+ — - |. (6.2.15)
‘ If the moments ¢ fail to exist beyond some value of 5, the terms which do make
s
: sense give the asymptotic behaviour near r = 0 (i.e,, near § = 0) [2.5]. In what fol-
lows, we assume that the moments exist so far as we need them for computation.
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X
Y
)
L]
Wherever the small parameter r appears explicitly in (6.2.15), we need to
)
replace it by an expression in the small parameter 6. Additionally, we will ex-
u
} pand £ in a series in 6, the form of which series depends on the strain curve f. To
o
,' first determine how r depends upon §, we use equation (6.2.4) and the equalities
k)
! U2 =U2(1+6)=J]1(1+ 6) to write:
T 2 3
- rd(r)=Je(l = 6+6" -6+ --.). (6.2.16)
Recall that j(r) is the Laplace transform of J(t). We transform equation (5.1.8)
to obtain:
(x rd(r) = J [1 - ry(r)]. (6.2.17)
3
! For small r:
_ (o]
¥(r) = / e "'p (1) dt
0
X /w[l t r2t2 To(0) ar
!
i l 2
=1o - Y1r+ ijzr - e, (6.2.18)
¥ with the use of (6.2.13).
E Using (6.2.18) in (6.2.17), we have:
) - 2 1 3
N rd(r) = Je[l = Yor+ ¢r° ~ 2—‘w2r + - - . (6.2.19)
-‘ Comparison of (6.2.19) with (6.2.16) suggests a power series expansion of r in §:
- 2 3
r=6r;+ 6 ro+ 6 rg+ - . (6.2.20)
. When we use (6.2.20) in (6.2.19) and equate the result with (6.2.16), we find that
the coefficients of the powers of 6 in the expansion of r are:
L]
1
ry = —
3 Yo
2
ro = rl(ql)lrl— 1) (6221)
1 3
7'3 = T‘l — ‘2‘11)27'1 +- 2¢1r1r2 + 1 ,
and so on.
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We insert (6.2.20) in (6.2.15), use U%2J, = 1+ &, and collect the powers of § to write

5(&(0) ~ €'(0))

U2(J « &")(8) - £(8)
+ 8% (") - £'(0))
+ 0(6%(9)), (6.2.22)

where we have used ryyyg = 1 in the O(6) term and 1 + rotpg = rfil)l in the O(52)

term, in view of equation (6.2.21).

So far, we have yet to expand € in a perturbation series in 6. For the first case
we consider, the strain curve is specified only as in (2.3.18), and the expansion of ¢

is crude:

€(0) = 6%&,(6) + o(6°%), (6.2.23)

where the exponent a is to be determined and €;(f) and its derivatives are O(1).

We insert (6.2.23) in (6.2.22) and obtain:
U2(J « ') (8) - €(8) = 6°F1(&,(6) - €,(8)) + o(6°F1). (6.2.24)
From (2.3.18) we have:
f(€) — é = ké™ + o(€7). (6.2.25)
Using (6.2.23) in (6.2.25), we obtain:

F(6(8)) — €(0) = 87%k(&,(8))7 + o(87%). (6.2.26)

When we put (6.2.24) and (6.2.26) in the governing equation (6.2.8), the lowest

order terms will enter with the same order of § provided

a = 71 T (6.2.27)
Thus,
e(t) = €(8) = 6’1_‘6‘1(0) + 0(571—1), (6.2.28)
102
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\ and €, is determined to within an integration constant from:
€1 - &1+ ké] = 0. (6.2.29)
.
X To integrate (6.2.29), we note that it ijs separable,
L]
B 1 dé,
L —— — = df (6.2.30)
1 - ké] €]
\ and may be put in the form
3 d
: — " s, (6.2.31)
‘S 1 — kenlo
where a is given in (6.2.27) and
n = Inéy. (6.2.32)
\ Upon integration of (6.2.31), we have:
' (6-60) /e
e
; ke"/a = —, 6.2.33
» 1+ elf—to}/a ( )
k)
' where fg is the integration constant. In this problem, the time origin is arbitrary.
We choose to set this origin with 83 = 0. Using (6.2.27) and (6.2.32) to write the
v .
; result in terms of £;, we have:
s 1 el1-1)6 ;‘1‘;
) &)=~ —mm—— . 6.2.34
; {0 =\ 5 oo (6.2.34)
¥ This may be written in terms of the hyperbolic tangent as:
1
2 (6) Ll Y L i (6.2.35)
€ =9y + tan . 2.
! 2k 2
\
‘ With the use of (6.2.5), we observe from (6.2.34) that €, has the asymptotic form
’. required by (6.2.3), to within the arbitrary time shift implicit in the multiplicative
1
. constant k~1/(7=1),
g We now consider this problem in more detail for strain curves amenable to a

power series expansion:

f(e)=e+aez+ﬂe3+ (6.2.36)
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In this case, it is reasonable to assume, at the outset, that

€(6) = 6&,(0) + 6264(8) + 0(6°), (6.2.37)

where the functions é;(0) and é,(6#) and their derivatives are O(1) with respect to §.

We use (6.2.37) in (6.2.36) and obtain:
[(€) - & =6%ae% + 6%(2a8,6, + BE3) + O(6Y). (6.2.38)
Similarly, from (6.2.37) and (6.2.22) we have:
UA(J «é') - ¢ = 6%, - &)
+ 6% (&2 - &+ rTui (e - &)
+ 0(8Y). (6.2.39)
We equate (6.2.38) and (6.2.39) according to (6.2.8) and obtain equations which ¢,
and €2 must satisfy. From the 0(62) terms, we get equation (6.2.29) for this case:

N ~ ~2
€1~ €1+ agy

i
o

(6.2 40)

The 0(63) terms produce an inhomogeneous differential equation for €5 with vari-

able coefficients which are continuous functions of 8:

€5(8) — a(0)éx(0) = (), (6.2.41)
where
a(f) = (1 - 20¢,(9))
(6.2.42)
b(8) = riv1(£7(0) — €1(0)) - BET(0).
We obtain €; immediately from equation (6.2.35):
1
,(0) = —[1 + tanh(6/2)]. (6.2.43)
2a

The solution for £, is the sum of a particular integral and the homogeneous solution:

£2(0) = é0(0) + &5(0). (6.2.44)
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The solution for the homogeneous equation is in general:

]
€X(8) = C exp { / a(E)df}, (6.2.45)

where C is the integration constant. With a(8) and €;(8) given by (6.2.42) and

(6.2.43), the integration is for ég is straightforward. The result is:

h(0) = Ccosh™2(8/2). (6.2.46)
For ég(ﬂ), we have in general:
[} [}
&b (0) =/ exp{/ a(e)de}b(q)dr,. (6.2.47)
n

Using €1(8) in equations (6.2.42) for a(f) and b(0), we have after much simplifica-

tion, the intermediate result:

/2
€P(6) = cosh™%(6/2) > cn/ / sinh™(€) cosh?™ ™ (€)d¢, (6.2.48)
n=0
where

s = _L(l"_u, _ﬂ_) )= L('/’_l_ 31)

2a ¢)§ 2a3% )’ 2a ¢v§ 203 )’
(6.2.49)

Y1

L( +_3ﬂ_) ch(n_L
! 2a wg 203/’ 3 20 '»[’(2) 203/’

for which we have used (6.2.21) to write the ¢, in terms of the compliance mo-
ments, ¥y and ¥,, defined in (6.2.13). Again, the integrations in (6.2.48) are
straightforward. After integrating and simplifying the result for sz, we add it to € 'h

according to (6.2.44). The result for £2(8) is:

() = — 2 [tanh(0/2)+tanh (0/2)]

1 8 Vi
{cosh 2(8/2) }{C * 2_0(2_—5 - E)<(0/2) + In [cosh(@/Z)])}.(G.Z.SO)
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To verify that £2(f) has the correct asymptotic property for § - —oo, we use

the fcllowing identities:

e" + e
3 coshz = 5
6.2.51
2e” ( )
tanh z = -1
ef + e *
For large negative z: b
e~ *
) coshz ~ ,
T — —co. (6.2.52)
tanh z ~ 2¢2% — 1,
Thus,
» tanh(6/2) + tanh?(8/2) ~ —2¢°,
1
! ~2 é )
cosh™“(8/2) ~ 4e § - —o0. (6.2.53) '
In [cosh(8/2)] ~ —(8/2) — In2,
! Using (6.2.52) and (6.2.53) in (6.2.50), we obtain:
B 1 g Ly
E200) ~ { s +14|Cc- —|—5-5]m2| ¢, § — ~o0. (6.2.54)
al 2a \ 2a P2

0

As in the solution for £,(#), the integration constant C serves to define the arbitrary

ti=re shift of the solution.

With &, and €, given in (6.2.43) and (6.2.50), our solution for £(#) is com-
plete, so far as we have expanded it in equation (6.2.37). Since €; and €5 are bounded
in 8, the expansion is uniformly asymptotic. To go on to higher orders in the so-
lution, one merely continues the expansion of (6.2.37) with terms 635”3(0) + 0(64)

and obtains an equation for é3(f) in terms of €} and £5.

As a final remark on the solution we have cbtained, we show that it produces
the correct equilibrium value, to within 0(63). From (6.2.43) and (6.2.50), respec-

tively, we have:

1
; lim &,(0) = +—
[ -~ 400 a
; p (6.2.55)
lim é,5(0) = -3
8-+ +00 o
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Thus, the equilibrium value for €(#) from (6.2.37) is:
5 ps’
ée= — = — + 0(5°), (6.2.56)
a s
We recall from section 3.3, equation (3.3.2), that the equilibrium value satisfies:
f(€e) = U, é.. (6.2.57)
Using U2J. =1+ 6 and the expansion of f in (6.2.36), we have from (6.2.57}:

aée+ BEI 4+ 0(3) = 5. (6.2.58)

When we solve (6.2.58) for €, in terms of §, we obtain equation (6.2.56), the required

result.

6.3 Power Law Materials with Quadratic Nonlinearity.

We now obtain steady wave solutions at all wavespeeds below that of the
acceleration wave for materials having a purely quadratic nonlinearity in the strain
curve:

f(e) = € + ae?, a>0. (6.3.1)

Our solutions apply for two different classes of material compliance models. The
first class is characterized by compliances J which have a non-zero initial jump, J,,

followed by a power law normalized compliance (§§4.6):

J(t) = J[H(t)+ CP(1)]

tP (6.3.2)
P(t) = —, p € (0,1],

p!

where p! is defined in equation (2.4.11) and C is a positive constant. Another class

of material models is defined by a power law compliance with no initial jump:

J(t) = CP (1), p € (0,1}, (6.3.3)
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where C is a positive constant. In such a model, p is the log-log slope of the

time dependence of J and is fairly constant over broad ranges of { in real materials
(see, e.g., Ferry [2.3]). In either model, p = 0 corresponds to purely elastic ma-
terials. Additionally, neither compliance model has a finite equilibrium value; the
equilibrium wavespeed Ue2 = 1/J, is therefore zero. Steady waves can exist in these
materials for all non-zero values of wavespeed. Since the power law material in
equation (6.3.3) has no initial jump, it cannot support steady shock or acceleration
wave solutions; the acceleration wavespeed Uf = 1/J, is infinite for J, = 0. For
A such materials, the steady wave solutions produced in this section apply for all finite

wavespeeds U € (0,00).

For either compliance, we reduce the problem to that of solving the same
S nonlinear integral equation with a singular kernel. For the normalized power law
\ model (6.3.2) with the strain curve of equation (6.3.1), the governing equa-

tion (3.1.10) yields:

(1-2)e+ac® = 2C(P'xe)(1), (6.3.4)
y for which we recall the definition of A given in equation (5.3.3):
A= U, = (UJU,)R (6.3.5)

For the wavespeeds of this section, we have A < 1. We introduce the scaled strain

w(t) = — ~e(1) (6.3.6)

1 -
and obtain from (6.3.4):
¥ AC
| u(t) + ul(t) = ﬁ—(P'iu)(t). (6.3.7)
X -

The positive constant multiplying the convolution may be absorbed by introducing

the scaled ron-dimensional time

( \C )‘/P
0= | —— t. (6.3.8)
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We then have
@(n) +u(n) = (P'«u)(n), (6.3.9)

where

() = u(t). (6.3.10)

Similarly, for a pure power law compliance defined in (6.3.3), equation (6.3.9) ob-

tains when v and n are defined as
- — (U%c\Ur
u(t) = ae(t) and n=(U°C) L. (6.3.11)

For both classes of materials, equation (6.3.9) is the nonlinear integral equation to
be solved for u. The kernel P'(n) is singular for p € (0,1). If p = 1, the kernel is
the Heaviside step function, with which convolution is a pure integration. In this

case, we have

n
T(n) + €i(n) = / u(s) ds. (6.3.12)

- 00

For any differentiable nonlinear function f(u), the integral equation

t
f(u) = / u(r)dr (6.3.13)

-0

may be differentiated to obtain
f(u)d(ln u) = dr. (6.3.14)
Integration of (6.3.14) gives u implicitly:
u
/ 7'(s) (ds/s) = t — to, (6.3.15)

for an arbitrary shift {,. For our quadratically nonlinear problem with p = 1, the

exact solution from (6.3.12) is therefore:

Inu(n) + 2u(n) = n — n,. (6.3.16)
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ﬂ For values of p € (0,1), the singular kernel in the convolution complicates the

problem. Our solution combines a series representation for the exponentially

small “toe” of the wave, valid until some ny € (-00,0), with an iterative solution

constructed on the interval [np, 9], for any n > ny. We first discuss the series solu-
tion. In the proof of Theorem 4.5.1, the existence theorem for these wavespeeds, we

used bounds analogous to
e — C'e?n < u(n) < e, (6.3.17)

for n sufficiently small with a positive constant C’ . This suggests we try an alter-

nating series solution in powers of e”:

[e o]
T(n) = 2 cpelktiin, (6.3.18)
k=0

We assume at this point that this series is absolutely convergent for 7 small enough
so that we may square it for use in (6.3.9). We will prove that this is so once the

coefficients {c,-}?‘io are determined. We have

T2(n) = 2 (cxc) ¥t (6.3.19)
k=0

where (¢ # ¢); represents the discrete convolution of coefficients:

k
(c*xc)y = Z Ch—jC;- (6.3.20)
i=0

We need the convoluton of P’ with an arbitrary exponential:

[ kn " _ p—1 ks
(P xe")(n) pln ~38)P " "e ’ds

-0

= kPekn, (6.3.21)

1
p!

x

with the use of (2.4.11). We use equations (6.3.18), (6.3.19), and (6.3.21) in (6.3.9)

and obtain:

=] [o o] [e o]
co + Z c,‘ek" + Z (c c)k_lck" = ¢coKg + Z ckchk", (6.3.22)
k=1 k=1 k=1
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where

Ky= ——,  k=0,1,2,.... (6.3.23)

With the observation that Ky = 1, we see that ¢; is arbitrary; we choose ¢cg = 1 to
obtain the solution which, according to (6.3.18), is asymptotic to 7 for g — —oo.
Since {e"‘"}":"=l is a linearly independent set, the coefficients in the series of (6.3.18)

are determined from the recursion relation:
cg = 1

—(c*e),_ (6.3.24)
¢p = ————H=L k=1,2,3 . ..
1 - K,

We note that (cxc)g = cg = 1. Furthermore, K| € (0,1) fork > 1. Thus, ¢; < 0. It
follows by induction that the coeflicients ¢, alternate in sign, since the summation

(the discrete convolution) involves terms which are either all negative or all positive.

Given the series for u defined by (6.3.18) and (6.3.24), we must show that
it converges absolutely on a non-empty interval (—oc,ny]|. Viewing (6.3.18) as a
power series in e7, we are, in effect, looking for a non-zero lower bound on the radius

of convergence of the series

Silz) = 2 feplz*. (6.3.25)
k=0

It is difficult to directly estimate the growth of the coefficients in this series. We

note for later comparison that the coefficients obey
le|>(C*C)k_l, k= 1,2,.... (63 IG)
We instead consider the series

o0
Sa(z) = 2 bpzF, (6.3.27)
k=0

with strictly positive coefficients defined by

by = (-1)fc,(1- KF,  k=o0,1,2,.. .. (6.3.28)
L]
: 111
! . g w W, g W, ¢ o) P AR < " iy h &
SO -'l!:' o= J":"?:'l..u 10 o e el e, el ‘:' SR 0?).:‘!’:.\4 e ' l,.'i’:r't. ":’t:‘t:":’l ORI ’:‘0‘.:".. ._!'0':':



- e absd

If S, converges for |z{ < R, then S| does so for |z] < (1 — K;)R. Consequently, the

'
series in (6.3.18) for u converges absolutely for 7 < In [(1 - K,)R]. To show the "
convergence of Sy, we first determine the recursion relation for its coefficients. We '

]
will then show that these coefficients are dominated by those of a power series with .
i
a non-zero radius of convergence. Using equations (6.3.24), (6.3.19), and (6.3.28), l
we obtain the recursion relation:
bg =1 A
b I—Kl(b b) kE=1,2 (6.3.29) J
= ——(bx —1» e =1,2, .... 3.
k=TT K, k-1 )
Observe that K; < Ky for all ¥ > 2. Therefore, ;
¢
y
by < (bxb)ey,  k=1,2,..., (6.3.30) !
. . '
with equality only at ¥ = 1. We have transformed series S; whose coefficients
]
are bounded below by their convolution, equation (6.3.26), into series S, for which
the coefficient convolution provides an upper bound. Consider now the se-
quence {dk}f=0 of positive numbers defined by: ::
t
do=1 ’
(6.3.31)
dp = (dxd)p_. L
H
Since bg = dg = 1, it follows from (6.3.30) and (6.3.31) that t
y
¢
t
by < dg, k=0,1,2,..., (6.3.32) B
with equality only at £k = 0,1. The sequence {dk}io=0 dominates the se- :
N
quence {bk}Z‘;o. We now exhibit a function which generates a power series having ‘
a non-zero radius of convergence with coeflicients which obey the recursion rela- |
t
!
tion (6.3.31). It is :
\
l 3
o(2)= —(1-V1-4z ) (6.3.33) 5
2z -
.,
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with the branch of the square root which is positive when its argument is real and

positive. For |z] < 1/4, we may write g as a convergent power series:

g(z) =) gpz", (6.3.34)
k=0

where the sequence of coefficients {g,} can be determined, for example, by

[ o)
k=0
expanding the square root in a binomial series. In particular,

go = 1
and

g > 0 for all k. (6.3.35)
The series is absolutely convergent and we may square it:

g%(z) = D (g * g)p2t. (6.3.36)
k=0

From (6.3.33), we eliminate the radical to obtain

(g~ 1) = 2242 (6.3.37)

Using equations {6.3.34) and (6.3.36) in (6.3.37), we have

o0 [o o]
k+1 k+2
PRI D P WL (6.3.38)
k=1 k=0
where we have used goz0 = 1. Upon adjustment of the indicies on the right sum-
mation, we see that
9 = (9 9)e_ 1, k=1,2,..., (6.3.39)
in view of the linear independence of {zk}2°=l. Since gg = 1, the coefficient

sequence {gk}fzo is identical to the sequence {dk}2°=04 Thus, the convergence
for |z] < 1/4 of the series for ¢ which dominates So implies the convergence of S»

in the same circle. Hence, for any n4 which satisfies

nr < In [(1 - K,)/4], (6.3.40)
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the series for u(y) in (6.3.18) converges absolutely, at least for all n < 9.
Since 1 — K| < 1, we have g < 0. We note that the series S diverges for |z| > 1/4.
p For, equations {6.3.26) and (6.3.39) with gg = 1 imply that the coefficients of §( z)
dominate those of the series for g(z}, which series for g diverges outside the cir-
cle |z| = 1/4. While the series for ¥ may converge absolutely for some n larger

than 57, it diverges absolutely for n > In(1/4), for all values of p.

We have thus far solved the problem on the half-line n < ng, where u(n) is
given exactly by the alternating series defined by equations (6.3.18) and (6.3.24). We
construct the solution for n > nr by iteration of monotone sequences of monotone

) functions, much as we did for the earlier constructions of shocks and acceleration
: waves. For the current problem, however, each iterate involves, for n > 57, a

contribution from the series solution for € ny. The iteration scheme is:

upr(n) = F((P'*Fk)(n)), (6.3.41)

where we now denote by F the inverse of u + u?. We first show that an increasing

(lower bound) sequence is started by

W W G gy

To(n) = { u(n), 1 § nT;

w(gr), 0297, (6.3.42)

where ¥ is the known serjes solution for n < py. Recall that ¥ is monotone, accord-

ing to Theorem 4.5.1. For 9 > 5,

n
(P,*—Jo)(’l) / P(n - s)du,(s)

i

nr
[ pn = o) dwto)

- &0

> (P« @) (nq), (6.3.43)

where we have used the increasing nature of u, and P along with the fact

that du, = 0 for > np. Since F, too, is increasing, we have
— { - ! - _— _—
i(n) = F((P'*%)(n) > F((P'+To)(nr)) = ¥(ap) = To(n), > nr (6.3.44)
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and the assertion is proven. Furthermore, u; is bounded above by e¢”, in view of

Lemma 4.5.1. Theorem 4.5.1 ensures that iteration of u, converges to the solution u.

Similarly, a decreasing (upper bound) sequence is started by the discontinuous

starter defined by:

e, 1> g (6.3.45)
For n > np,
((p’*m,)(q)) < Plael = e, (6.3.46)
according to Lemma 4.5.1, since u(n) < ¢". Thus,
up(n) < F(e") < ¢" = uo(n), n> 1. (6.3.47)

All iterates in the resulting upper bound sequence are bounded below by the
lower bound starter of equation (6.3.42), since u;(#) is so bounded, in view of
Lemma 4.3.4. Accordingly, the upper bound sequence converges to the solution .
We remark that the discontinuity in the upper bound starter is not present in the

succeeding iterates, since P is continuous.

We again resort to a simple numerical scheme to generate graphs of approxi-
mations to the upper and lower bound sequences discussed above. The results we
present are not for solutions asymptotic to ¢” for - —oo. Rather, we consider

the shifted solutions

a(n) =u(n - lurl), (6.3.48)

so that the series solution for # is always used for g < 0. We have

IA

o0
u(n) = Z Eke(k+l)", n <0, (6.3.49)
k=0

where

& = cpe” (FHDInrl (6.3.50)
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and 5y is chosen according to (6.3.40). Any iterate in the sequence of bounding

functions has the form:

o(n) = { 100,

n < 0,
w(n), =7 >0.

(6.3.51)
The convolution with P’ is:
(e o]
(P'xp)(n) :/ p(n - s)P'(s)ds
0
n oo
= [ p(n - s)P'(s)ds + / i(n — s)P'(s)ds. (6.3.52)
0 n

From equations (6.3.2) and {6.3.49), we sce that the last integral in (6.3.52) is a

sum of integrals of the form:

1 o0
I(n) = _‘/ M=) p Py (6.3.53)
"

=

With the change of variables rs — £, we have

r - Pe™h ®
I(g) = —— “ferlye. 6.3.54
(1) = — ”!fm ‘ ¢ (6.3.54)

The integral in (6.3.54) is an incomplete gamma function. In the notation of

Abramowitz and Stegun [5.1], we have

~p rn L{p, 1)

T =r T(p)

, (6.3.55)

for which the connection with our notation in (2.4.11) is provided by
p!=T(p+ 1). (6.3.56)

Using equations (6.3.49), (6.3.53), and (6.3.55) in (6.3.52), the complete expression
for the convolution for n > 0 is:

e(k+l)r]

! 1 > -
(P' v p)(n) =—— D &

T (p,(k+1
Cp) 7 F e+ 1) (p. (k + 1))

+ l—/n pl(n — s)dP(s). (6.3.57)
P! o
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The alternating series in this result can be approximated arbitrarily closely by a
finite number of terms with the magnitude of the error bounded by that of the first
neglected term. To approximate the incomplete gamma function, we use the con-
vergent series, continued fraction, and asymptotic series representations given, re-
spectively, in equations (6.5.29), (6.5.31), and (6.5.32) of [5.1]. We approximate
the convolution integral with the scheme presented in equations (5.5.15). (5.5.16),

and (5.5.30) of this work.

Figure 6.1 illustrates truncated upper and lower bound sequences for a quad-
ratically nonlinear material with p = 1/4. Ilere we chose np = —4 and we have plot-
ted u(n) = u(n — 1) against . It shows the lower bound starter of equation (6.3.42)
and the first 19 iterates of the sequence it generates, along with the upper bound
starter of equation (6.3.45) and the first 17 iterates of its sequence. For each approx-
imate iterate, 100 points were computed and plotted for 3 > 0. For all figures in
this section, 50 points are plotted for 5 < 0 where the alternating series solution is
shown. Figures 6.3-6.6, discussed below, were prepared with 200 points computed
and plotted for . > 0. As in the graphs of Chapter 5, the large space between the
truncated sequences is the numerical approximation to the bound within which the

solution is to be found.

We expect thal a starting function which is similar to the expected form of
the solution will yield better bounds upon iteration. We now present such a starter

for an upper bound sequence. We define

Li(n)=c¢", (6.3.58)
and Bo(n) as the solution to:
BZ(n) = (P’ « By)(n). (6.3.59)
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The solution for By is

!
Ba(n) = (_gﬁ(" - n0)?. (6.3.60)

We show that the starting function defined by:

u, = B (")) 1 S .
UO(I]) - { 1 1.
By(n), n 2, (6.3.61)
with
Pyt
p Do
7y = In ( ) and ne =19, — p, (6.3.62)
(2p)!

starts a decreasing sequence upon iteration. These values of ng and 57 produce a

continuously differentiable starter u,. From the iteration scheme (6.3.41). we have

;= P, (6.3.63)

If, for all p, iteration produces u; + Ff < Uy + Ug, then v; < u, and u, starts

a decreasing sequence. It is therefore sufficient to show that P/« 7, < u, + Ug.

Since P! e" = e the result is immediate for 5 < 7y1. For n > 9y,

(P wo)(n)

K /!
/ uy(s)P'(n — s)ds

- 00

m , n
= / By(s)P'(y - s)ds + / Bo(s)P'(n - s)ds

- 00 7

I]I n
/ Bi(s)P'(q - s)ds + / Ba(s)P'(q - s)ds

~ 00 ng
nl
- / Bo(s)P'(y - s)ds. (6.3.64)
no

Since Bo vanishes for § < 5, we can extend the lower limit of integration in the

last two integrals above to —oo. Thus,
1 n
(r'«u,)(n) = / (By - By)(s)P'(n - s)ds + / Ba(s)P'(n — s)ds.  (6.3.65)
-0 -0
The last integralis (P'« By)(n) = Bg(r]), according to equation (6.3.59). Therefore,
o K '
(P +x%,)(n) = Bé’(r})+/ (By - Ba)(s)P'(y — s)ds
— 00

m
< 822(1]) + / (B, - 1}2)(3)P'(r)1 — s)ds, (6.3.66)

- 00
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since (B - By)(n) > 0 for all y # y; and P'(n) is a decreasing function. The last
integral in {6.3.66) is Pl (B, - Ba)(ny) = Byl(y,) - 13,:",3(1“). Therefore,
(P e wo)(n) < Bi(n)+ By(ny) = Bi(ny)
< Bi(n)+ By(ny)
= Bi(n) + Balny), (6.3.67)
since u, is continuous at ;. Now [}, is increasing, Hence, we obtain:
(P ~,)(n) < Bi(n) + Ba(n)

= T (n) + Toln). (6.3.6x)

which proves the assertion.

With this result, it is easy to show that an upper bound starter useful for our
numerical work is provided by the discontinuous function defined as:
u(n), n < Ny
u,(n) = { Byln), 9y < np < gy (G 3.69)
Ban), n 2,
with ng and 5 given in (6.3.62) and the series for u in {6.3.18). Figures ¢.2 6.6
illustrate approximate bounds based upon this upper bound starter. Iu Figure 6.2
(p = 1/4) with 100 points computed and plotted for 5 > 0, we sce that the carly
iterates are much better upper bounds than those started by the discontinuous

exponential starter defined in equation (6.3.45) and illustrated in Figure 6.1

Recall, we have the exact solution for u{(n) for all  in the single case when
p = 1. It is given in equation (6.3.16). In Figure 6.3, we compare the results
of 20 iterations in both lower and upper bound sequences with the exact result
to provide some verification of our numerical scheme. The approximate iterated
solution and the exact solution are indistinguishable. Figures 6.4- 6.6 illustrate our

approximations to bounds on the solutions for p = 1/2, 1/4, and 1/10.
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Figure 6.1. Approximations to bounding sequences for p = 1/4. The ordinate

variable is u{n) = u(n — 4). The abscissa represents the non-dimensional time y.
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Figure 6.2. Upper bound starter of equation (6.3.69) and 17 iterates for
p = 1/4. The ordinate variable is &(n) = u(n — 4). The abscissa represents the

non-dimensional time n.
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Figure 6.3. The exact solution for p = | and the superimposed 20-th iterates in

the upper and lower bound sequences. The ordinate variable is () = u(n - 2).

The abscissa represents the non-dimensional time n.
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Figure 6.4. The superimposed 20-th upper bound and lower bound iterates for

p - 1/2. The ordinate variable is a{n) = u(n — 3).

non-dimensional time 9.
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Figure 6.5. The 20-th upper bound and lower bound iterates for p = 1/4. The

ordinate variable is 4(n) = w(n ~ 4). The abscissa represents the non-dimensional

time 3.
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Figure 6.6. The 50-th upper bound and lower bound iterates for p = 1/10. The

ordinate variable is u(n) = u(n — 5). The abscissa represents the non-dimensional
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